817 research outputs found

    Dense packing crystal structures of physical tetrahedra

    Full text link
    We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry

    Nanowire metamaterials with extreme optical anisotropy

    Full text link
    We study perspectives of nanowire metamaterials for negative-refraction waveguides, high-performance polarizers, and polarization-sensitive biosensors. We demonstrate that the behavior of these composites is strongly influenced by the concentration, distribution, and geometry of the nanowires, derive an analytical description of electromagnetism in anisotropic nanowire-based metamaterials, and explore the limitations of our approach via three-dimensional numerical simulations. Finally, we illustrate the developed approach on the examples of nanowire-based high energy-density waveguides and non-magnetic negative index imaging systems with far-field resolution of one-sixth of vacuum wavelength.Comment: Updated version; accepted to Appl.Phys.Let

    Recursion and Path-Integral Approaches to the Analytic Study of the Electronic Properties of C60C_{60}

    Full text link
    The recursion and path-integral methods are applied to analytically study the electronic structure of a neutral C60C_{60} molecule. We employ a tight-binding Hamiltonian which considers both the ss and pp valence electrons of carbon. From the recursion method, we obtain closed-form {\it analytic} expressions for the π\pi and σ\sigma eigenvalues and eigenfunctions, including the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states, and the Green's functions. We also present the local densities of states around several ring clusters, which can be probed experimentally by using, for instance, a scanning tunneling microscope. {}From a path-integral method, identical results for the energy spectrum are also derived. In addition, the local density of states on one carbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.Comment: 19 pages, RevTex, 6 figures upon reques

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Spin tunneling in the Kagom\'e antiferromagnet

    Full text link
    The collective tunneling of a small cluster of spins between two degenerate ground state configurations of the Kagom\'{e}-lattice quantum Heisenberg antiferromagnet is \mbox{studied}. The cluster consists of the six spins on a hexagon of the lattice. The resulting tunnel splitting energy Δ\Delta is calculated in detail, including the prefactor to the exponential \exp(- \SSo / \hbar). This is done by setting up a coherent spin state path integral in imaginary time and evaluating it by the method of steepest descent. The hexagon tunneling problem is mapped onto a much simpler tunneling problem, involving only one collective degree of freedom, which can be treated by known methods. It is found that for half-odd-integer spins, the tunneling amplitude and the tunnel splitting energy are exactly zero, because of destructive interference between symmetry-related (+)(+)-instanton and ()(-)-instanton tunneling paths. This destructive interference is shown to occur also for certain larger loops of spins on the Kagom\'{e} lattice. For small, integer spins, our results suggest that tunneling strongly competes with \mbox{in-plane} order-from-disorder selection effects; it constitutes a disordering mechanism that might drive the system into a partially disordered ground state, related to a spin nematic.Comment: 38 pages (RevTex), 8 figures upon request PRB921

    Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer

    Full text link
    The number of solid partitions of a positive integer is an unsolved problem in combinatorial number theory. In this paper, solid partitions are studied numerically by the method of exact enumeration for integers up to 50 and by Monte Carlo simulations using Wang-Landau sampling method for integers up to 8000. It is shown that, for large n, ln[p(n)]/n^(3/4) = 1.79 \pm 0.01, where p(n) is the number of solid partitions of the integer n. This result strongly suggests that the MacMahon conjecture for solid partitions, though not exact, could still give the correct leading asymptotic behaviour.Comment: 6 pages, 4 figures, revtex

    Feasibility of free space quantum key distribution with coherent polarization states

    Full text link
    We demonstrate for the first time the feasibility of free space quantum key distribution with continuous variables under real atmospheric conditions. More specifically, we transmit coherent polarization states over a 100m free space channel on the roof of our institute's building. In our scheme, signal and local oscillator are combined in a single spatial mode which auto-compensates atmospheric fluctuations and results in an excellent interference. Furthermore, the local oscillator acts as spatial and spectral filter thus allowing unrestrained daylight operation.Comment: 12 pages, 8 figures, extensions in sections 2, 3.1, 3.2 and 4. This is an author-created, un-copyedited version of an article accepted for publication in New Journal of Physics (Special Issue on Quantum Cryptography: Theory and Practice). IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy

    Full text link
    A local and medium range atomic structure model for the face centred icosahedral (fci) Mg25Y11Zn64 alloy has been established in a sphere of r = 27 A. The model was refined by least squares techniques using the atomic pair distribution (PDF) function obtained from synchrotron powder diffraction. Three hierarchies of the atomic arrangement can be found: (i) five types of local coordination polyhedra for the single atoms, four of which are of Frank-Kasper type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104 atoms, which is condensed sharing its outer shell with its neighbouring clusters and (iii) a cluster connecting scheme corresponding to a three-dimensional tiling leaving space for few glue atoms. Inside adjacent clusters, Y8-cubes are tilted with respect to each other and thus allow for overall icosahedral symmetry. It is shown that the title compound is essentially isomorphic to its holmium analogue. Therefore fci-Mg-Y-Zn can be seen as the representative structure type for the other rare earth analogues fci-Mg-Zn-RE (RE = Dy, Er, Ho, Tb) reported in the literature.Comment: 12 pages, 8 figures, 2 table
    corecore