The number of solid partitions of a positive integer is an unsolved problem
in combinatorial number theory. In this paper, solid partitions are studied
numerically by the method of exact enumeration for integers up to 50 and by
Monte Carlo simulations using Wang-Landau sampling method for integers up to
8000. It is shown that, for large n, ln[p(n)]/n^(3/4) = 1.79 \pm 0.01, where
p(n) is the number of solid partitions of the integer n. This result strongly
suggests that the MacMahon conjecture for solid partitions, though not exact,
could still give the correct leading asymptotic behaviour.Comment: 6 pages, 4 figures, revtex