1,987 research outputs found
The effects of deviate internal representations in the optimal model of the human operator
Some of the issues and equations involved in predicting closed-loop man machine performance for situations in which the human operators' knowledge of the system and/or environment are imperfect are presented and discussed. Several examples to demonstrate some of the effects to be expected when such is the case are then given
Functional specification of the Performance Measurement (PM) module
The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months
A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy-barriers revealed by high-field Electron Spin Resonance spectroscopy
The reorientation of one small paramagnetic molecule (spin probe) in glassy
polystyrene (PS) is studied by high-field Electron Spin Resonance spectroscopy
at two different Larmor frequencies (190 and 285 GHz). The exponential
distribution of the energy-barriers for the rotational motion of the spin probe
is unambigously evidenced at both 240K and 270K. The same shape for the
distribution of the energy-barriers of PS was evidenced by the master curves
provided by previous mechanical and light scattering studies. The breadth of
the energy-barriers distribution of the spin probe is in the range of the
estimates of the breadth of the PS energy-barriers distribution. The evidence
that the deep structure of the energy landscape of PS exhibits the exponential
shape of the energy-barriers distribution agrees with results from
extreme-value statistics and the trap model by Bouchaud and coworkers.Comment: Final version in press as Letter to the Editor on J.Phys.:Condensed
Matter. Changes in bol
Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood
A new approach to nonlinear modelling is presented which, by incorporating
the global behaviour of the model, lifts shortcomings of both least squares and
total least squares parameter estimates. Although ubiquitous in practice, a
least squares approach is fundamentally flawed in that it assumes independent,
normally distributed (IND) forecast errors: nonlinear models will not yield IND
errors even if the noise is IND. A new cost function is obtained via the
maximum likelihood principle; superior results are illustrated both for small
data sets and infinitely long data streams.Comment: RevTex, 11 pages, 4 figure
The Advanced LIGO Photon Calibrators
The two interferometers of the Laser Interferometry Gravitaional-wave
Observatory (LIGO) recently detected gravitational waves from the mergers of
binary black hole systems. Accurate calibration of the output of these
detectors was crucial for the observation of these events, and the extraction
of parameters of the sources. The principal tools used to calibrate the
responses of the second-generation (Advanced) LIGO detectors to gravitational
waves are systems based on radiation pressure and referred to as Photon
Calibrators. These systems, which were completely redesigned for Advanced LIGO,
include several significant upgrades that enable them to meet the calibration
requirements of second-generation gravitational wave detectors in the new era
of gravitational-wave astronomy. We report on the design, implementation, and
operation of these Advanced LIGO Photon Calibrators that are currently
providing fiducial displacements on the order of
m/ with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure
A Single Dermatome Clinical Prediction Rule for Independent Walking 1 Year After Spinal Cord Injury
Objective: To derive and validate a simple, accurate CPR to predict future independent walking ability after SCI at the bedside that does not rely on motor scores and is predictive for those initially classified in the middle of the SCI severity spectrum. Design: Retrospective cohort study. Binary variables were derived, indicating degrees of sensation to evaluate predictive value of pinprick and light touch variables across dermatomes. The optimal single sensory modality and dermatome was used to derive our CPR, which was validated on an independent dataset. Setting: Analysis of SCI Model Systems dataset. Participants: Individuals with traumatic SCI. The data of 3679 participants (N=3679) were included with 623 participants comprising the derivation dataset and 3056 comprising the validation dataset. Interventions: Not applicable. Main Outcome Measures: Self-reported ability to walk both indoors and outdoors. Results: Pinprick testing at S1 over lateral heels, within 31 days of SCI, accurately identified future independent walkers 1 year after SCI. Normal pinprick in both lateral heels provided good prognosis, any pinprick sensation in either lateral heel provided fair prognosis, and no sensation provided poor prognosis. This CPR performed satisfactorily in the middle SCI severity subgroup. Conclusions: In this large multi-site study, we derived and validated a simple, accurate CPR using only pinprick sensory testing at lateral heels that predicts future independent walking after SCI
A Support Group for Inpatient Abused Adolescents
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75359/1/j.1744-6171.1990.tb00438.x.pd
- …