73,022 research outputs found

    The aeronomy of vibrationally excited ozone

    Get PDF
    Theoretical calculations show that above 80 km in the earth's atmosphere the production of vibrationally excited ozone by chemical processes leads to number densities which are usually larger than those expected for local thermodynamic equilibrium. Quenching of highly excited molecules produced in O+O2+M, O3+M provided a significant source of the lower lying states above the mesopause while the 9.6 microns emission of O3 (0,0,1) was a major sink. Analysis of available laboratory results implied that reactions involving excited ozone play a significant role in the global ozone balance despite the relatively small abundance of the molecule. However, this effect is implicit in many of the rate coefficients currently used in stratospheric calculations. In the upper mesosphere and lower thermosphere, where the excited state populations differ from those for thermal equilibrium, published reaction rate data are not necessarily applicable to aeronomic calculations

    An assessment of the newest magnetar-SNR associations

    Full text link
    Anomalous X-ray Pulsars and Soft-Gamma Repeaters groups are magnetar candidates featuring low characteristic ages (τ=P2P˙\tau = {P\over{2 {\dot P}}}). At least some of them they should still be associated with the remnants of the explosive events in which they were born, giving clues to the type of events leading to their birth and the physics behind the apparent high value of the magnetar magnetic fields. To explain the high values of BB, a self-consistent picture of field growth also suggests that energy injection into the SNR is large and unavoidable, in contrast with the evolution of {\it conventional} SNR. This modified dynamics, in turn, has important implications for the proposed associations. We show that this scenario yields low ages for the new candidates CXOU J171405.7-381031/CTB 37B and XMMU J173203.3-344518/G353.6-0.7, and predicted values agree with recently found P˙{\dot P}, giving support to the overall picture.Comment: Contributed talk to the ASTRONS 2010 Conference, Cesme, Turkey, Aug. 2-6 201

    Test results of a 40-kW Stirling engine and comparison with the NASA Lewis computer code predictions

    Get PDF
    A Stirling engine was tested without auxiliaries at Nasa-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were: (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations from those predicted by the code. The silicon carbide foam generators appear to be structurally suitable, but the foam matrix showed severely reduced performance

    Preliminary flight prototype potable water bactericide system

    Get PDF
    The development, design, and testing of a preliminary flight prototype potable water bactericide system are described. The system is an assembly of upgraded canisters composed of: (1) A biological filter; (2) an activated charcoal and ion exchange resin canister; (3) a silver chloride canister, (4) a deionizer, (5) a silver bromide canister with a partial bypass, and (6) mock-up instrumentation and circuitry. The system exhibited bactericidal activity against 10 to the 9th power Pseudomonas aeruginosa and/or Type IIIa, and reduced Bacillus subtilis by up to 5 orders of magnitude in 24 hours at ambient temperatures with a 1 ppm silver ion dose. Four efficacy tests were performed with a AgBr canister dosing anticipated fuel cell water. Tests show that a 0.05 ppm silver ion dose was bactericidal against 3 plus or minus 1 x 10 to the 9th power (5 plus or minus 1 x 10,000/ml Pseudomonas aeruginosa and/or Type IIIa in 15 minutes or less

    Advance prototype silver ion water bactericide system

    Get PDF
    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared

    Preliminary study of VTO thrust requirements for a V/STOL aircraft with lift plus lift/cruise propulsion

    Get PDF
    A preliminary assessment was made of the VTO thrust requirements for a supersonic (Type B) aircraft with a Lift plus Lift/Cruise propulsion system. A baseline aircraft with a takeoff gross weight (TOGW) of 13 608 kg (30,000 lb) was assumed. Pitch, roll, and yaw control thrusts (i.e., the thrusts needed for aircraft attitude control in the flight hover mode) were estimated based on a specified set of maneuver acceleration requirements for V/STOL aircraft. Other effects (such as installation losses, suckdown, reingestion, etc.), which add to the thrust requirements for VTO were also estimated. For the baseline aircraft, the excess thrust required for attitude control of the aircraft during VTO and flight hover was estimated to range from 36.9 to 50.9 percent of the TOGW. It was concluded that the total thrust requirements for the aircraft/propulsion system are large and significant. In order to achieve the performance expected of this aircraft/propulsion system, reductions must be made in the excess thrust requirements

    Illumination from space with orbiting solar-reflector spacecraft

    Get PDF
    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed
    corecore