969 research outputs found
Electronic transport in Si:P delta-doped wires
Despite the importance of Si:P delta-doped wires for modern nanoelectronics,
there are currently no computational models of electron transport in these
devices. In this paper we present a nonequilibrium Green's function model for
electronic transport in a delta-doped wire, which is described by a
tight-binding Hamiltonian matrix within a single-band effective-mass
approximation. We use this transport model to calculate the current-voltage
characteristics of a number of delta-doped wires, achieving good agreement with
experiment. To motivate our transport model we have performed
density-functional calculations for a variety of delta-doped wires, each with
different donor configurations. These calculations also allow us to accurately
define the electronic extent of a delta-doped wire, which we find to be at
least 4.6 nm.Comment: 13 pages, 11 figure
Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide
Materials that undergo reversible metal-insulator transitions are obvious
candidates for new generations of devices. For such potential to be realised,
the underlying microscopic mechanisms of such transitions must be fully
determined. In this work we probe the correlation between the energy landscape
and electronic structure of the metal-insulator transition of vanadium dioxide
and the atomic motions occurring using first principles calculations and high
resolution X-ray diffraction. Calculations find an energy barrier between the
high and low temperature phases corresponding to contraction followed by
expansion of the distances between vanadium atoms on neighbouring sub-lattices.
X-ray diffraction reveals anisotropic strain broadening in the low temperature
structure's crystal planes, however only for those with spacings affected by
this compression/expansion. GW calculations reveal that traversing this barrier
destabilises the bonding/anti-bonding splitting of the low temperature phase.
This precise atomic description of the origin of the energy barrier separating
the two structures will facilitate more precise control over the transition
characteristics for new applications and devices.Comment: 11 Pages, 8 Figure
Effective mass theory of monolayer \delta-doping in the high-density limit
Monolayer \delta-doped structures in silicon have attracted renewed interest
with their recent incorporation into atomic-scale device fabrication strategies
as source and drain electrodes and in-plane gates. Modeling the physics of
\delta-doping at this scale proves challenging, however, due to the large
computational overhead associated with ab initio and atomistic methods. Here,
we develop an analytical theory based on an effective mass approximation. We
specifically consider the Si:P materials system, and the limit of high donor
density, which has been the subject of recent experiments. In this case,
metallic behavior including screening tends to smooth out the local disorder
potential associated with random dopant placement. While smooth potentials may
be difficult to incorporate into microscopic, single-electron analyses, the
problem is easily treated in the effective mass theory by means of a jellium
approximation for the ionic charge. We then go beyond the analytic model,
incorporating exchange and correlation effects within a simple numerical model.
We argue that such an approach is appropriate for describing realistic,
high-density, highly disordered devices, providing results comparable to
density functional theory, but with greater intuitive appeal, and lower
computational effort. We investigate valley coupling in these structures,
finding that valley splitting in the low-lying \Gamma band grows much more
quickly than the \Gamma-\Delta band splitting at high densities. We also find
that many-body exchange and correlation corrections affect the valley splitting
more strongly than they affect the band splitting
Recommended from our members
Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh
A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers
Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection
Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF
Ab initio calculation of energy levels for phosphorus donors in silicon
The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modeling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron’s ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T 2) and 1s(E) states, finding them to be 32 and 31 meV respectively
- …