5 research outputs found

    Supplemental Material from Binocular combination of stimulus orientation

    No full text
    When two sinewaves that differ slightly in orientation are presented to the two eyes separately, a single cyclopean sinewave is perceived. However, it is unclear how the brain calculates its orientation. Here, we used a signal detection rating method to estimate the perceived orientation when the two eyes were presented with Gabor patches that differed in both orientation and contrast. We found a nearly linear combination of orientation when both targets had the same contrast. However, the binocular percept shifted away from the linear prediction towards the orientation with the higher contrast, depending on both the base contrast and the contrast ratio. We found that stimuli that differ slightly in orientation are combined into a single percept, similarly for monocular and binocular presentation, with a bias that depends on the interocular contrast ratio. Our results are well fit by gain-control models, and are consistent with a previous study that favoured the DKSL model that successfully predicts binocular phase and contrast combination and binocular contrast discrimination. In this model, the departures from linearity may be explained on the basis of mutual suppression and mutual enhancement, both of which are stronger under dichoptic than monocular conditions

    Strain-Induced ZnO Spinterfaces

    No full text
    A series of undoped ZnO films of different thicknesses was grown on different substrates over a range of different temperatures and oxygen partial pressures. Notably, ferromagnetism was detected in very thin ZnO films (∼20 nm), and its magnetic ordering was also found to be thermally stable up to 800 °C. To our surprise, magnetic ordering was destroyed as the ZnO overlayer grew thicker, just as its in-plane compressive strain was released and the ZnO/substrate interface damaged by misfit dislocations. The source of magnetism was found to be due to neither defects in the bulk of the ZnO overlayer nor the bulk of the substrate. Experimental results showed that strain at the ZnO/substrate interface led to a strain-induced magnetic effect. Using first-principles ab intio calculation, we confirmed that strain at the ZnO/substrate interface stabilizes zinc vacancy defects, which are magnetic. Ferromagnetic ordering is a result of the coupling of unpaired electron spins originating from the oxygen 2p orbitals surrounding the zinc vacancies

    The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

    Full text link
    Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the "Metabochip," a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    No full text
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore