66 research outputs found

    Lovastatin Inhibits VEGFR and AKT Activation: Synergistic Cytotoxicity in Combination with VEGFR Inhibitors

    Get PDF
    BACKGROUND: In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR). Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR) and EGFR share similar activation, internalization and downstream signaling characteristics. METHODOLOGY/PRINCIPAL FINDINGS: The VEGFRs, particularly VEGFR-2 (KDR, Flt-1), play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM), also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC) and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses. CONCLUSIONS/SIGNIFICANCE: These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors

    Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

    Get PDF
    Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. In mice, lovastatin mitigated acute doxorubicin-induced heart and liver damage as indicated by reduced mRNA levels of the pro-fibrotic cytokine connective tissue growth factor (CTGF) and pro-inflammatory cytokines, respectively. Lovastatin also protected from doxorubicin-provoked subacute cardiac damage as shown by lowered mRNA levels of CTGF and atrial natriuretic peptide. Increase in the serum concentration of troponin I and cardiac fibrosis following doxorubicin treatment were also reduced by lovastatin. Whereas protecting the heart from harmful doxorubicin effects, lovastatin augmented its anticancer efficacy in a mouse xenograft model with human sarcoma cells. These data show that statins lower the incidence of cardiac tissue injury after anthracycline treatment in a Rac1-dependent manner, without impairing the therapeutic efficacy

    Regulation of Retinoid Receptors by Retinoic Acid and Axonal Contact in Schwann Cells

    Get PDF
    Background: Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. Methodology/Principal Findings: In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-c depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-c mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-b mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. Conclusions/Significance: All together, our results show that retinoid receptors are regulated in a complex manner i

    Simvastatin and purine analogs have a synergic effect on apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Despite many therapeutic regimens introduced recently, chronic lymphocytic leukemia (CLL) is still an incurable disorder. Thus, there is an urgent need to discover novel, less toxic and more effective drugs for CLL patients. In this study, we attempted to assess simvastatin, widely used as a cholesterol-lowering drug, both as a single agent and in combination with purine analogs—fludarabine and cladribine—in terms of its effect on apoptosis and DNA damage of CLL cells. The experiments were done in ex vivo short-term cell cultures of blood and bone marrow cells from newly diagnosed untreated patients. We analyzed expression of active caspase-3 and the BCL-2/BAX ratio as markers of apoptosis and the expression of phosphorylated histone H2AX (named γH2AX) and activated ATM kinase (ataxia telangiectasia mutated kinase), reporters of DNA damage. Results of our study revealed that simvastatin induced apoptosis of CLL cells concurrently with lowering of BCL-2/BAX ratio, and its pro-apoptotic effect is tumor-specific, not affecting normal lymphocytes. We observed that combinations of simvastatin+fludarabine and simvastatin+cladribine had a synergic effect in inducing apoptosis. Interestingly, the rate of apoptosis caused by simvastatin alone and in combination was independent of markers of disease progression like ZAP-70 and CD38 expression or clinical stage according to Rai classification. We have also seen an increase in γH2AX expression in parallel with activation of ATM in most of the analyzed samples. The results suggest that simvastatin can be used in the treatment of CLL patients as a single agent as well as in combination with purine analogs, being equally effective both in high-risk and good-prognosis patients. One of the mechanisms of simvastatin action is inducing DNA damage that ultimately leads to apoptosis

    Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    Get PDF
    BACKGROUND: Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. HYPOTHESIS: We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. TESTING THE HYPOTHESIS: Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. IMPLICATIONS OF THE HYPOTHESIS: We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome
    corecore