2,197 research outputs found

    Improved self-gain in deep submicrometer strained silicon-germanium pMOSFETs with HfSiOx/TiSiN gate stacks

    Get PDF
    The self-gain of surface channel compressively strained SiGe pMOSFETs with HfSiOx/TiSiN gate stacks is investigated for a range of gate lengths down to 55 nm. There is 125% and 700% enhancement in the self-gain of SiGe pMOSFETs compared with the Si control at 100 nm and 55 nm lithographic gate lengths, respectively. This improvement in the self-gain of the SiGe devices is due to 80% hole mobility enhancement compared with the Si control and improved electrostatic integrity in the SiGe devices due to less boron diffusion into the channel. At 55 nm gate length, the SiGe pMOSFETs show 50% less drain induced barrier lowering compared with the Si control devices. Electrical measurements show that the SiGe devices have larger effective channel lengths. It is shown that the enhancement in the self-gain of the SiGe devices compared with the Si control increases as the gate length is reduced thereby making SiGe pMOSFETs with HfSiOx/TiSiN gate stacks an excellent candidate for analog/mixed-signal applications

    Weakly Delayed Linear Planar Systems of Discrete Equations

    Get PDF
    Dizertační práce se zabývá slabě zpožděnými lineárními rovinnými systémemy s konstantními koeficienty. Charakteristická rovnice těchto systémů je identická s charakteristickou rovnicí systému, který neobsahuje zpožděné členy. V takovém případě se počáteční dimenze prostoru řešení mění po několika krocích na menší. V jistém smyslu je tato situace analogická podobnému jevu v teorii lineárních diferenciálních systémů s konstantními koeficienty a speciálním zpožděním, kdy původně nekonečně rozměrný prostor řešení (na počátečním intervalu) přejde po několika krocích do konečného prostoru řešení. V práci je pro každý možný případ kombinace kořenů charakteristické rovnice konstruováno obecné řešení daného systému a jsou formulovány výsledky o dimenzi prostoru řešení. Také je zkoumána stabilita řešení.The present thesis deals with planar weakly delayed linear discrete systems. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and special delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained. The stability of solutions is investigated as well.

    Properties of short channel ballistic carbon nanotube transistors with ohmic contacts

    Full text link
    We present self-consistent, non-equilibrium Green's function calculations of the characteristics of short channel carbon nanotube transistors, focusing on the regime of ballistic transport with ohmic contacts. We first establish that the band lineup at the contacts is renormalized by charge transfer, leading to Schottky contacts for small diameter nanotubes and ohmic contacts for large diameter nanotubes, in agreement with recent experiments. For short channel ohmic contact devices, source-drain tunneling and drain-induced barrier lowering significantly impact the current-voltage characteristics. Furthermore, the ON state conductance shows a temperature dependence, even in the absence of phonon scattering or Schottky barriers. This last result also agrees with recently reported experimental measurements.Comment: Nanotechnology, in pres
    corecore