1,039 research outputs found

    Bayesian inference for ultralow velocity zones in the Earth's lowermost mantle: complex ULVZ beneath the east of the Philippines

    No full text
    Ultralow velocity zones (ULVZs) are small-scale structures with a sharp decrease in S and P wave velocity, and an increase in the density on the top of the Earth's core-mantle boundary. The ratio of S and P wave velocity reduction and density anomaly are important to understanding whether ULVZs consist of partial melt or chemically distinct material. However, existing methods such as forward waveform modeling that utilize 1-D and 2-D Earth-structure models face challenges when trying to uniquely quantify ULVZ properties because of inherent nonuniqueness and nonlinearity. This paper develops a Bayesian inversion for ULVZ parameters and uncertainties with rigorous noise treatment to address these challenges. The posterior probability density of the ULVZ parameters (the solution to the inverse problem) is sampled by the Metropolis-Hastings algorithm. To improve sampling efficiency, parallel tempering is applied by simulating a sequence of tempered Markov chains in parallel and allowing information exchange between chains. First, the Bayesian inversion is applied to simulated noisy data for a realistic ULVZ model. Then, measured data sampling the lowermost mantle under the Philippine Sea are considered. Cluster analysis and visual waveform inspection suggest that two distinct classes of ScP (S waves converted to, and reflected as, P waves) waves exist in this region. The distinct waves likely correspond to lateral variability in the lowermost mantle properties in a NE-SW direction. For the NE area, Bayesian model selection identifies a two-layer model with a gradual density increase as a function of depth as optimal. This complex ULVZ structure can be due to the percolation of iron-enriched, molten material in the lowermost mantle. The results for the SW area are more difficult to interpret, which may be due to the limited number of data available (too few waveforms to appropriately reduce noise) and/or complex 2-D and 3-D structures that cannot be explained properly by the 1-D models required by our inversion approach. In particular, the complex waveforms require highly layered 1-D models to fit the data. These models appear physically unreasonable and suggest that the SW region cannot be explained by 1-D structure.National Collaborative Research Infrastructure Strategy (NCRIS) and the Education Investment Fund (EIF3)

    A Waveguide for Bose-Einstein Condensates

    Get PDF
    We report on the creation of Bose-Einstein condensates of 87^{87}Rb in a specially designed hybrid, dipole and magnetic trap. This trap naturally allows the coherent transfer of matter waves into a pure dipole potential waveguide based on a doughnut beam. Specifically, we present studies of the coherence of the ensemble in the hybrid trap and during the evolution in the waveguide by means of an autocorrelation interferometer scheme. By monitoring the expansion of the ensemble in the waveguide we observe a mean field dominated acceleration on a much longer time scale than in the free 3D expansion. Both the autocorrelation interference and the pure expansion measurements are in excellent agreement with theoretical predictions of the ensemble dynamics

    Phase Fluctuations in Bose-Einstein Condensates

    Full text link
    We demonstrate the existence of phase fluctuations in elongated Bose-Einstein Condensates (BECs) and study the dependence of those fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the phase coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation is developed.Comment: 11 pages, 7 figure

    Momentum interferences of a freely expanding Bose-Einstein condensate in 1D due to interatomic interaction change

    Full text link
    A Bose-Einstein condensate may be prepared in a highly elongated harmonic trap with negligible interatomic interactions using a Feshbach resonance. If a strong repulsive interatomic interaction is switched on and the axial trap is removed to let the condensate evolve freely in the axial direction, a time dependent quantum interference pattern takes place in the short time (Thomas-Fermi) regime, in which the number of peaks of the momentum distribution increases one by one, whereas the spatial density barely changes.Comment: 4 pages, 5 figure

    Localization and Anomalous Transport in a 1-D Soft Boson Optical Lattice

    Full text link
    We study the dynamics of Bose-Einstein condensed atoms in a 1-D optical lattice potential in a regime where the collective (Josephson) tunneling energy is comparable with the on-site interaction energy, and the number of particles per lattice site is mesoscopically large. By directly imaging the motion of atoms in the lattice, we observe an abrupt suppression of atom transport through the array for a critical ratio of these energies, consistent with quantum fluctuation induced localization. Directly below the onset of localization, the frequency of the observed superfluid transport can be explained by a phonon excitation but deviates substantially from that predicted by the hydrodynamic/Gross-Pitaevskii equations.Comment: 14 pages, 5 figure

    Dominance rank predicts social network position across developmental stages in rhesus monkeys

    Get PDF
    Social network analysis is increasingly common in studying the complex interactions among individuals. Across a range of primates, high-ranking adults are generally more socially connected, which results in better fitness outcomes. However, it still remains unclear whether this relationship between social network position and dominance rank emergences in infancy and whether, in species with a social transmission of dominance rank, social network positions are driven by the presence of the mother. To fill this gap, we first explored whether dominance ranks were related to social network position, measured via eigenvector centrality, in infants, juveniles, and adults in a troop of semi-free ranging rhesus macaques (Macaca mulatta). We then examined relationships between dominance rank and eigenvector centrality in a peer-only group of yearlings who were reared with their mothers in either a rich, socially complex environment of multigenerational (MG) kin support or a unigenerational (UG) group of mothers and their infants from birth through eight months. In experiment 1, we found that mother’s network position predicted offspring network position, and that dominants across all age categories were more central in affiliative networks (social contact, social grooming, and social play). Experiment 2 showed that high-ranking yearlings in a peer-only group were more central only in the social contact network. Moreover, yearlings reared in a socially complex environment of MG kin support were more central. Our findings suggest that the relationship between dominance rank and social network position begins early in life, and that complex early social environments can promote later social competency. Our data add to the growing body of evidence that the presence/absence of the mother and kin influence how dominance rank affects social network position. These findings have important implications for the role of caregivers in the social status of developing primates, which ultimately ties to health and fitness outcomes

    Anisotropic Quantum Corrections for 3-D Finite-Element Monte Carlo Simulations of Nanoscale Multigate Transistors

    Get PDF
    Anisotropic 2-D Schrödinger equation-based quantum corrections dependent on valley orientation are incorporated into a 3-D finite-element Monte Carlo simulation toolbox. The new toolbox is then applied to simulate nanoscale Si Siliconon-Insulator FinFETs with a gate length of 8.1 nm to study the contributions of conduction valleys to the drive current in various FinFET architectures and channel orientations. The 8.1 nm gate length FinFETs are studied for two cross sections: rectangular-like and triangular-like, and for two channel orientations: 〈100〉 and 〈110〉. We have found that quantum anisotropy effects play the strongest role in the triangular-like 〈100〉 channel device increasing the drain current by ~13% and slightly decreasing the current by 2% in the rectangular-like 〈100〉 channel device. The quantum anisotropy has a negligible effect in any device with the 〈110〉 channel orientation
    corecore