720 research outputs found

    Collective Excitations Spectrum in Density Modulated One-Dimensional Electron Gas in a Magnetic Field

    Full text link
    We determine the collective excitations spectrum and discuss the numerical results for a parabolically confined density modulated quasi-one dimensional electron gas (1DEG) in the presence of an external magnetic field. We derive the inter-and intra-band magnetoplasmon spectrum within the Self Consistent Field (SCF) approach. In this work we focus on magnetoplasmon oscillations in this system and as such results are presented for the intra-Landau-band magnetoplasmon spectrum that exhibits oscillatory behavior, these oscillations are not with constant period in 1/B and are significantly effected at low B and corresponding high 1/B.Comment: 10 pages, 2 figure

    Far-Infrared Excitations below the Kohn Mode: Internal Motion in a Quantum Dot

    Full text link
    We have investigated the far-infrared response of quantum dots in modulation doped GaAs heterostructures. We observe novel modes at frequencies below the center-of-mass Kohn mode. Comparison with Hartree-RPA calculations show that these modes arise from the flattened potential in our field-effect confined quantum dots. They reflect pronounced relative motion of the charge density with respect to the center-of-mass.Comment: 8 pages, LaTeX with integrated 6 PostScript figure

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    Evidence for additive and synergistic action of mammalian enhancers during cell fate determination

    Get PDF
    Enhancer activity drives cell differentiation and cell fate determination, but it remains unclear how enhancers cooperate during these processes. Here we investigate enhancer cooperation during transdifferentiation of human leukemia B-cells to macrophages. Putative enhancers are established by binding of the pioneer factor C/EBPα followed by chromatin opening and enhancer RNA (eRNA) synthesis from H3K4-monomethylated regions. Using eRNA synthesis as a proxy for enhancer activity, we find that most putative enhancers cooperate in an additive way to regulate transcription of assigned target genes. However, transcription from 136 target genes depends exponentially on the summed activity of its putative paired enhancers, indicating that these enhancers cooperate synergistically. The target genes are cell type-specific, suggesting that enhancer synergy can contribute to cell fate determination. Enhancer synergy appears to depend on cell type-specific transcription factors, and such interacting enhancers are not predicted from occupancy or accessibility data that are used to detect superenhancers

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe

    Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    Get PDF
    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems

    Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamic effects

    Full text link
    We discuss possible origins of recently discovered microwave induced photoresistance oscillations in very-high-electron-mobility two-dimensional electron systems. We show that electrodynamic effects -- the radiative decay, plasma oscillations, and retardation effects, -- are important under the experimental conditions, and that their inclusion in the theory is essential for understanding the discussed and related microwave induced magnetotransport phenomena.Comment: 5 pages, including 2 figures and 1 tabl

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    Telerobotics Workstation (TRWS) for Deep Space Habitats

    Get PDF
    On medium- to long-duration human spaceflight missions, latency in communications from Earth could reduce efficiency or hinder local operations, control, and monitoring of the various mission vehicles and other elements. Regardless of the degree of autonomy of any one particular element, a means of monitoring and controlling the elements in real time based on mission needs would increase efficiency and response times for their operation. Since human crews would be present locally, a local means for monitoring and controlling all the various mission elements is needed, particularly for robotic elements where response to interesting scientific features in the environment might need near- instantaneous manipulation and control. One of the elements proposed for medium- and long-duration human spaceflight missions, the Deep Space Habitat (DSH), is intended to be used as a remote residence and working volume for human crews. The proposed solution for local monitoring and control would be to provide a workstation within the DSH where local crews can operate local vehicles and robotic elements with little to no latency. The Telerobotics Workstation (TRWS) is a multi-display computer workstation mounted in a dedicated location within the DSH that can be adjusted for a variety of configurations as required. From an Intra-Vehicular Activity (IVA) location, the TRWS uses the Robot Application Programming Interface Delegate (RAPID) control environment through the local network to remotely monitor and control vehicles and robotic assets located outside the pressurized volume in the immediate vicinity or at low-latency distances from the habitat. The multiple display area of the TRWS allows the crew to have numerous windows open with live video feeds, control windows, and data browsers, as well as local monitoring and control of the DSH and associated systems
    • …
    corecore