271 research outputs found

    Metal abundances in PG1159 stars from Chandra and FUSE spectroscopy

    Get PDF
    We investigate FUSE spectra of three PG1159 stars and do not find any evidence for iron lines. From a comparison with NLTE models we conclude a deficiency of 1-1.5 dex. We speculate that iron was transformed into heavier elements. A soft X-ray Chandra spectrum of the unique H- and He-deficient star H1504+65 is analyzed. We find high neon and magnesium abundances and confirm that H1504+65 is the bare core of either a C-O or a O-Ne-Mg white dwarf.Comment: To be published in: Proceedings 13th European Workshop on White Dwarfs, NATO Science Series, 4 pages, 1 figur

    A NLTE model atmosphere analysis of the pulsating sdO star SDSS J1600+0748

    Full text link
    We started a program to construct several grids of suitable model atmospheres and synthetic spectra for hot subdwarf O stars computed, for comparative purposes, in LTE, NLTE, with and without metals. For the moment, we use our grids to perform fits on our spectrum of SDSS J160043.6+074802.9 (J1600+0748 for short), this unique pulsating sdO star. Our best fit is currently obtained with NLTE model atmospheres including carbon, nitrogen and oxygen in solar abundances, which leads to the following parameters for SDSS J1600+0748 : Teff = 69 060 +/- 2080 K, log g = 6.00 +/- 0.09 and log N(He)/N(H) = -0.61 +/- 0.06. Improvements are needed, however, particularly for fitting the available He II lines. It is hoped that the inclusion of Fe will help remedy the situation.Comment: 4 pages, 4 figures, accepted in Astrophysics and Space Science (24/02/2010), Special issue Hot sudbwarf star

    FUSE spectroscopy of sdOB primary of the post common-envelope binary LB 3459 (AA Dor)

    Full text link
    LB 3459 (AA Dor) is an eclipsing, close, post common-envelope binary consisting of an sdOB primary star and an unseen secondary with an extraordinarly low mass - formally a brown dwarf. A recent NLTE spectral analysis shows a discrepancy with the surface gravity, which is derived from analyses of radial-velocity and lightcurves. We aim at precisely determing of the photospheric parameters of the primary, especially of the surface gravity, and searching for weak metal lines in the far UV. We performed a detailed spectral analysis of the far-UV spectrum of LB 3459 obtained with FUSE by means of state-of-the-art NLTE model-atmosphere techniques. A strong contamination of the far-UV spectrum of LB 3459 by interstellar line absorption hampers a precise determination of the photospheric properties of its primary star. Its effective temperature (42 kK) was confirmed by the evaluation of new ionization equilibria. For the first time, phosphorus and sulfur have been identified in the spectrum of LB 3459. Their photospheric abundances are solar and 0.01 times solar, respectively. From the C III 1174-1177A multiplet, we can measure the rotational velocity of 35 +/- 5 km/sec of the primary of LB 3459 and confirm that the rotation is bound. From a re-analysis of optical and UV spectra, we determine a higher log g = 5.3 (cgs) that reduces the discrepancy in mass determination in comparison to analyses of radial-velocity and lightcurves. However, the problem is not completely solved.Comment: 10 pages, 15 figure

    Iron abundance in hot hydrogen-deficient central stars and white dwarfs from FUSE, HST, and IUE spectroscopy

    Full text link
    We present a first systematic investigation of the iron abundance in very hot (Teff>50,000K) hydrogen-deficient post-AGB stars. Our sample comprises 16 PG1159 stars and four DO white dwarfs. We use recent FUSE observations as well as HST and IUE archival data to perform spectral analyses with line blanketed NLTE model atmospheres. Iron is not detected in any PG1159 star. In most cases this is compatible with a solar iron abundance due to limited quality of HST and IUE data, although the tendency to an iron underabundance may be recognized. However, the absence of iron lines in excellent FUSE spectra suggests an underabundance by at least 1 dex in two objects (K1-16 NGC 7094). A similar result has been reported recently in the [WC]-PG1159 transition object Abell 78 (Werner et al. 2002). We discuss dust fractionation and s-process neutron-captures as possible origins. We also announce the first identification of sulfur in PG1159 stars.Comment: Accepted for publication in A&A, 10 pages, 9 figure
    • …
    corecore