234 research outputs found

    Aging mechanism in tunable Pickering emulsion

    Full text link
    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23%\% is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective

    Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases

    Full text link
    The linear compressibility of two-dimensional fatty acid mesophases has determined by grazing incidence x-ray diffraction. Surface pressure vs molecular area isotherms were reconstructed from these measurements, and the linear compressibility (relative distortion along a given direction for isotropic applied stress) was determined both in the sample plane and in a plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different sets which we are able to associate with different molecular mechanisms. The largest compressibilities (10m/N) are observed in the tilted phases. They are apparently independent of the chain length and could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and could be related to the ordering of these phases. The lowest compressibilities are observed in the solid untilted CS phase and for 1 direction of the S and L_2'' phases. They are similar to the compressibility of crystalline polymers and correspond to the interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the transverse plane for L_2' and L_2'' phases and can be traced to subtle reorganizations upon untilting.Comment: 24 pages, 17 figure

    Extended Capillary Waves and the Negative Rigidity Coefficient in the d=2 SOS model

    Full text link
    The solid-on-solid (SOS) model of an interface separating two phases is exactly soluble in two dimensions (d=2) when the interface becomes a one-dimensional string. The exact solution in terms of the transfer matrix is recalled and the density-density correlation function H(z1,z2;Δx)H(z_1,z_2;\Delta x) together with its projections, is computed. It is demonstrated that the shape fluctuations follow the (extended) capillary-wave theory expression S(q)=kT/(D+γq2+κq4)S(q)=kT/(D+\gamma q^2 +\kappa q^4) for sufficiently small wave vectors qq. We find κ\kappa {\it negative}, κ<0\kappa <0 . At q=2πq=2\pi there is a strong nearest-neighbor peak. Both these results confirm the earlier findings as established in simulations in d=3 and in continuous space, but now in an exactly soluble lattice model.Comment: file.tex plus 4 (four) figures in Postscrip

    Breaking of the Bancroft rule for multiple emulsions stabilized by a single stimulable polymer

    Get PDF
    International audienceWe investigated emulsions of water and toluene stabilized by (co)polymers consisting of styrene (S) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer units with different compositions and structures such as a PDMAEMA homopolymer, a P(S-co-DMAEMA) random copolymer and various PS-b-PDMAEMA and PS-b-(S-co-DMAEMA) block copolymers. The model system is used to study the fundamental conditions under which the different kinds of polymer-stabilized emulsions (direct oil in water, inverse water in oil and multiple emulsions) are stabilized or destabilized by pH change (at constant temperature). Polymer properties like chain conformation at the toluene-water interface as probed by SANS and neutron reflectivity at the liquid-liquid interface, the oil-water partitioning of the polymer chains (Bancroft's rule of thumb) as determined by UV spectroscopy and interfacial tensions measured by the rising and spinning drop techniques are determined. Overall, results evidence that the curvature sign, as defined by positive and negative values as the chain segments occupy preferentially the water and toluene sides of the interface respectively, reliably predicts the emulsion kind. In contrast, the Bancroft rule failed at foreseeing the emulsion type. In the region of near zero curvature the crossover from direct to inverse emulsions occurs through the formation of either unstable coexisting direct and inverse emulsions (i) or multiple emulsions (ii). The high compact adsorption of the chains at the interface as shown by low interfacial tension values does not allow to discriminate between both cases. However, the toluene-water partitioning of the polymeric emulsifier is still a key factor driving the formation of (i) or (ii) emulsions. Interestingly, the stabilization of the multiple emulsions can be tuned to a large extent as the toluene-water polymer partitioning can be adjusted using quite a large number of physico-chemical parameters linked to polymer architecture like diblock length ratio or polymer total molar mass, for example. Moreover, we show that monitoring the oil-water partitioning aspect of the emulsion system can also be used to lower the interfacial tension at low pH to values slightly higher than 0.01 mN m-1, irrespective of the curvature sign

    Membrane restructuring following in situ sialidase digestion of gangliosides : complex model bilayers by synchrotron radiation reflectivity

    Get PDF
    Synchrotron radiation reflectometry was used to access the transverse structure of model membranes under the action of the human sialidase NEU2, down to the \uc5ngstr\uf6m length scale. Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in cholesterol and sphingolipids, and where also typical signalling molecules are hosted. Gangliosides, glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in GEMs, in the outer membrane leaflet where gangliosides are claimed to interact directly with growth-factor receptors, modulating their activation and then the downstream intracellular signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show that the outcome of the sialidase action is not limited to the emergence of lower-sialylated ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to control dynamically the structural properties of the membrane external leaflet of living cells, influencing both the morphology of the close environment and the extent of interaction among active molecules belonging to signalling platforms

    Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    Full text link
    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces
    corecore