4,569 research outputs found

    Social presence in the 21st Century: an adjustment to the Community of Inquiry framework

    Get PDF
    The Community of Inquiry framework, originally proposed by Garrison, Anderson and Archer (2000) identifies teaching, social and cognitive presences as central to a successful online educational experience. This article presents the findings of a study conducted in Uruguay between 2007 and 2010. The research aimed to establish the role of cognitive, social and teaching presences in the professional development of 40 English language teachers on Continuous Professional Development (CPD) programmes delivered in blended learning settings. The findings suggest that teaching presence and cognitive presence have themselves 'become social'. The research points to social presence as a major lever for engagement, sense-making and peer support. Based on the patterns identified in the study, this article puts forward an adjustment to the Community of Inquiry framework, which shows social presence as more prominent within the teaching and cognitive constructs than the original version of the framework suggests

    Operations on integral lifts of K(n)

    Full text link
    This very rough sketch is a sequel to arXiv:1808.08587; it presents evidence that operations on lifts of the functors K(n) to cohomology theories with values in modules over valuation rings of local number fields, indexed by Lubin-Tate groups of such fields, are extensions of the groups of automorphisms of the indexing group laws, by the exterior algebras on the normal bundle to the orbits of the group laws in the space of lifts.Comment: \S 2.0 hopefully less cryptic. To appear in the proceedings of the 2015 Nagoya conference honoring T Ohkawa. Comments very welcome

    Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement

    Get PDF
    We examine the prospect of demonstrating Einstein-Podolsky-Rosen (EPR) entanglement for massive particles using spin-changing collisions in a spinor Bose-Einstein condensate. Such a demonstration has recently been attempted by Gross et al. [Nature (London) 480, 219 (2011)] using a condensate of Rb-87 atoms trapped in an optical lattice potential. For the condensate initially prepared in the (F, m(F)) = (2,0) hyperfine state, with no population in the m(F) = +/- 1 states, we predict a significant suppression of the product of inferred quadrature variances below the Heisenberg uncertainty limit, implying strong EPR entanglement. However, such EPR entanglement is lost when the collisions are initiated in the presence of a small (currently undetectable) thermal population (n) over bar (th) in the m(F) = +/- 1 states. For condensates containing 150-200 atoms, we predict an upper bound of (n) over bar (th) similar or equal to 1 that can be tolerated in this experiment before EPR entanglement is lost

    Moments of von Mises and Fisher distributions and applications

    Get PDF
    The von Mises and Fisher distributions are spherical analogues to the Normal distribution on the unit circle and unit sphere, respectively. The computation of their moments, and in particular the second moment, usually involves solving tedious trigonometric integrals. Here we present a new method to compute the moments of spherical distributions, based on the divergence theorem. This method allows a clear derivation of the second moments and can be easily generalized to higher dimensions. In particular we note that, to our knowledge, the variance-covariance matrix of the three dimensional Fisher distribution has not previously been explicitly computed. While the emphasis of this paper lies in calculating the moments of spherical distributions, their usefulness is motivated by their relationship to population statistics in animal/cell movement models and demonstrated in applications to the modelling of sea turtle navigation, wolf movement and brain tumour growth

    Frobenius Splittings

    Full text link
    We give a gentle introduction to Frobenius splittings. Then we recall a few results that have been obtained with the method.Comment: 21 pages, typos correcte

    Quantum line bundles on noncommutative sphere

    Full text link
    Noncommutative (NC) sphere is introduced as a quotient of the enveloping algebra of the Lie algebra su(2). Using the Cayley-Hamilton identities we introduce projective modules which are analogues of line bundles on the usual sphere (we call them quantum line bundles) and define a multiplicative structure in their family. Also, we compute a pairing between certain quantum line bundles and finite dimensional representations of the NC sphere in the spirit of the NC index theorem. A new approach to constructing the differential calculus on a NC sphere is suggested. The approach makes use of the projective modules in question and gives rise to a NC de Rham complex being a deformation of the classical one.Comment: LaTeX file, 15 pp, no figures. Some clarifying remarks are added at the beginning of section 2 and into section

    Processing of the ultra-light syntactic foam material EccostockÂź FFP using selective laser sintering

    Get PDF
    Production of custom shaped, low density parts and components has a wide number of industrial applications, but also due to the nature of the material can be challenging [1]. Additive manufacturing forms final parts in a layer by layer process from a stack of 2D sections or slices and allows fabrication of almost any arbitrary 3D shape. Depending on the material and desired pore size, this technique can be used to prepare syntactic foams from open cellular structures as well as from composite materials with a high content of glass microspheres. Eccostock FFP is an off the shelf, epoxy-based composite free-flowing powder. Exposed to the temperatures about 100- 150 °C it cures into the rigid and ultra-light three phase syntactic foam (~ 0.1 g/cc). Material is standardly used for physical support and to provide thermal insulation for delicate electrical components in high vibration environments. In its powder form, it allows material to reach inside densely populated electronic packages and its low shrinkage means that electronic components will not be damaged during the curing procedure. The same characteristics also open the possibility to process this powder using the SLS system and benefit from the design freedom of the additive manufacturing technologies. Selective laser sintering (SLS) is one of the powder bed fusion processes, where parts are built using a laser beam as a heat source inducing fusion between powder particles. Powder is uniformly spread across the building platform and kept heated at a temperature just below the melting and curing point. Interaction with the laser selectively cures the polymer matrix entrapping glass microspheres, while the rest of the powder is unaffected and serves as a support. After each slice, the building platform lowers down a certain distance and a new powder layer is recoated on the surface [2]. In this work we optimised parameters for the processing of the Eccostock FFP powder in the standard SLS machine (EOS Formiga P100). Optimal process temperature and laser energy were defined. Using different sets of parameters we produced compression samples to evaluate mechanical properties of the final parts as well as the influence of the different printing parameters on the part density. We showed that syntactic foams parts can be produced using a relatively low processing temperature (below 70 °C) with short heating and cooling periods and exhibited good dimensional accuracy and shape freedom, making SLS an interesting technology to produce ultra-low density, custom shaped structures for industrial applications. Please click Additional Files below to see the full abstract
    • 

    corecore