1,004 research outputs found

    A quantum Peierls-Nabarro barrier

    Get PDF
    Kink dynamics in spatially discrete nonlinear Klein-Gordon systems is considered. For special choices of the substrate potential, such systems support continuous translation orbits of static kinks with no (classical) Peierls-Nabarro barrier. It is shown that these kinks experience, nevertheless, a lattice-periodic confining potential, due to purely quantum effects anaolgous to the Casimir effect of quantum field theory. The resulting ``quantum Peierls-Nabarro potential'' may be calculated in the weak coupling approximation by a simple and computationally cheap numerical algorithm, which is applied, for purposes of illustration, to a certain two-parameter family of substrates.Comment: 13 pages LaTeX, 7 figure

    Magnetic bubble refraction and quasibreathers in inhomogeneous antiferromagnets

    Full text link
    The dynamics of magnetic bubble solitons in a two-dimensional isotropic antiferromagnetic spin lattice is studied, in the case where the exchange integral J(x,y) is position dependent. In the near continuum regime, this system is described by the relativistic O(3) sigma model on a spacetime with a spatially inhomogeneous metric, determined by J. The geodesic approximation is used to describe low energy soliton dynamics in this system: n-soliton motion is approximated by geodesic motion in the moduli space of static n-solitons, equipped with the L^2 metric. Explicit formulae for this metric for various natural choices of J(x,y) are obtained. From these it is shown that single soliton trajectories experience refraction, with 1/J analogous to the refractive index, and that this refraction effect allows the construction of simple bubble lenses and bubble guides. The case where J has a disk inhomogeneity (taking the value J_1 outside a disk, and J_2<J_1 inside) is considered in detail. It is argued that, for sufficiently large J_1/J_2 this type of antiferromagnet supports approximate quasibreathers: two or more coincident bubbles confined within the disk which spin internally while their shape undergoes periodic oscillations with a generically incommensurate period.Comment: Conference proceedings paper for talk given at Nonlinear Physics Theory and Experiment IV, Gallipoli, Italy, June 200

    The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

    Get PDF
    The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol'nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact K\"ahler domain and target. We go on to prove a continuity property for our result, and show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n>1. We also prove that, within the geodesic approximation, a single CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded discussion of the main function spac

    Integrability of Differential-Difference Equations with Discrete Kinks

    Full text link
    In this article we discuss a series of models introduced by Barashenkov, Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4 theory which preserve travelling kink solutions. We show, by applying the multiple scale test that they have some integrability properties as they pass the A_1 and A_2 conditions. However they are not integrable as they fail the A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics: Theory and Experiment.VI" in a special issue di Theoretical and Mathematical Physic

    Instability of breathers in the topological discrete sine-Gordon system

    Get PDF
    It is demonstrated that the breather solutions recently discovered in the weakly coupled topological discrete sine-Gordon system are spectrally unstable. This is in contrast with more conventional spatially discrete systems, whose breathers are always spectrally stable at sufficiently weak coupling.Comment: 7 page

    Slow Schroedinger dynamics of gauged vortices

    Full text link
    Multivortex dynamics in Manton's Schroedinger--Chern--Simons variant of the Landau-Ginzburg model of thin superconductors is studied within a moduli space approximation. It is shown that the reduced flow on M_N, the N vortex moduli space, is hamiltonian with respect to \omega_{L^2}, the L^2 Kaehler form on \M_N. A purely hamiltonian discussion of the conserved momenta associated with the euclidean symmetry of the model is given, and it is shown that the euclidean action on (M_N,\omega_{L^2}) is not hamiltonian. It is argued that the N=3 flow is integrable in the sense of Liouville. Asymptotic formulae for \omega_{L^2} and the reduced Hamiltonian for large intervortex separation are conjectured. Using these, a qualitative analysis of internal 3-vortex dynamics is given and a spectral stability analysis of certain rotating vortex polygons is performed. Comparison is made with the dynamics of classical fluid point vortices and geostrophic vortices.Comment: 22 pages, 2 figure

    Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential

    Get PDF
    For the nonlinear Klein-Gordon type models, we describe a general method of discretization in which the static kink can be placed anywhere with respect to the lattice. These discrete models are therefore free of the {\it static} Peierls-Nabarro potential. Previously reported models of this type are shown to belong to a wider class of models derived by means of the proposed method. A relevant physical consequence of our findings is the existence of a wide class of discrete Klein-Gordon models where slow kinks {\it practically} do not experience the action of the Peierls-Nabarro potential. Such kinks are not trapped by the lattice and they can be accelerated by even weak external fields.Comment: 6 pages, 2 figure

    Breathers in the weakly coupled topological discrete sine-Gordon system

    Get PDF
    Existence of breather (spatially localized, time periodic, oscillatory) solutions of the topological discrete sine-Gordon (TDSG) system, in the regime of weak coupling, is proved. The novelty of this result is that, unlike the systems previously considered in studies of discrete breathers, the TDSG system does not decouple into independent oscillator units in the weak coupling limit. The results of a systematic numerical study of these breathers are presented, including breather initial profiles and a portrait of their domain of existence in the frequency-coupling parameter space. It is found that the breathers are uniformly qualitatively different from those found in conventional spatially discrete systems.Comment: 19 pages, 4 figures. Section 4 (numerical analysis) completely rewritte
    • …
    corecore