11,996 research outputs found

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    Lie Symmetries and Exact Solutions of First Order Difference Schemes

    Full text link
    We show that any first order ordinary differential equation with a known Lie point symmetry group can be discretized into a difference scheme with the same symmetry group. In general, the lattices are not regular ones, but must be adapted to the symmetries considered. The invariant difference schemes can be so chosen that their solutions coincide exactly with those of the original differential equation.Comment: Minor changes and journal-re

    Difference schemes with point symmetries and their numerical tests

    Full text link
    Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods without an increase in cost. For an example involving a solution with a singularity in the integration region the symmetry preserving scheme, contrary to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure

    The lattice Schwarzian KdV equation and its symmetries

    Full text link
    In this paper we present a set of results on the symmetries of the lattice Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point symmetries and, using its associated spectral problem, an infinite sequence of generalized symmetries and master symmetries. We finally show that we can use master symmetries of the lSKdV equation to construct non-autonomous non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE VI

    A new two-dimensional lattice model that is "consistent around a cube"

    Full text link
    For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is "consistent around a cube" (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those assumptions was the "tetrahedron property", which is satisfied by most known equations. We present here one lattice equation that satisfies the consistency condition but does not have the tetrahedron property. Its Lax pair is also presented and some basic properties discussed.Comment: 8 pages in LaTe

    Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction of the lattice potential KdV

    Full text link
    We consider multiple lattices and functions defined on them. We introduce slow varying conditions for functions defined on the lattice and express the variation of a function in terms of an asymptotic expansion with respect to the slow varying lattices. We use these results to perform the multiple--scale reduction of the lattice potential Korteweg--de Vries equation.Comment: 17 pages. 1 figur

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Discrete derivatives and symmetries of difference equations

    Full text link
    We show on the example of the discrete heat equation that for any given discrete derivative we can construct a nontrivial Leibniz rule suitable to find the symmetries of discrete equations. In this way we obtain a symmetry Lie algebra, defined in terms of shift operators, isomorphic to that of the continuous heat equation.Comment: submitted to J.Phys. A 10 Latex page

    Integrability of Differential-Difference Equations with Discrete Kinks

    Full text link
    In this article we discuss a series of models introduced by Barashenkov, Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4 theory which preserve travelling kink solutions. We show, by applying the multiple scale test that they have some integrability properties as they pass the A_1 and A_2 conditions. However they are not integrable as they fail the A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics: Theory and Experiment.VI" in a special issue di Theoretical and Mathematical Physic
    corecore