266 research outputs found

    Analytical design of multispectral sensors

    Get PDF
    An optimal design based on the criterion of minimum mean square representation error using the Karhunen-Loeve expansion was developed to represent the spectral response functions from a stratum based upon a stochastic process scene model. From the overall pattern recognition system perspective, the effect of the representation accuracy on a typical performance criterion (the probability of correct classification) is investigated. The optimum sensor design provides a standard against which practical (suboptimum) operational sensors can be compared. An example design is provided and its performance is illustrated. Although developed primarily for the purpose of sensor design, the procedure has potential for making important contributions to scene understanding. Spectral channels which have narrow bandwidths relative to current sensor systems may be necessary to provide adequate spectral representation and improved classification performance

    Simulation techniques for estimating error in the classification of normal patterns

    Get PDF
    Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound

    Preliminary results on machine classification of soil associations in Collin County, Texas

    Get PDF
    There are no author-identified significant results in this report

    Multistage classification of multispectral Earth observational data: The design approach

    Get PDF
    An algorithm is proposed which predicts the optimal features at every node in a binary tree procedure. The algorithm estimates the probability of error by approximating the area under the likelihood ratio function for two classes and taking into account the number of training samples used in estimating each of these two classes. Some results on feature selection techniques, particularly in the presence of a very limited set of training samples, are presented. Results comparing probabilities of error predicted by the proposed algorithm as a function of dimensionality as compared to experimental observations are shown for aircraft and LANDSAT data. Results are obtained for both real and simulated data. Finally, two binary tree examples which use the algorithm are presented to illustrate the usefulness of the procedure

    On the accuracy of pixel relaxation labeling

    Get PDF
    There are no author-identified significant results in this report

    Pixel labeling by supervised probabilistic relaxation

    Get PDF
    There are no author-identified significant results in this report

    The analytical design of spectral measurements for multispectral remote sensor systems

    Get PDF
    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error

    Earth observational research using multistage EOS-like data

    Get PDF
    This grant is funded as a part of a program in which both research and educational impact are intended. Research work under this grant is directed at the understanding and use of future hyperspectral data such as that from imaging spectrometers. Specifically, the objectives of the work are (1) to prepare suitable means for analyzing data from sensors which have large numbers of spectral bands, (2) to advance the fundamental understanding of the manner in which soils and vegetative materials reflect high spectral resolution optical wavelength radiation, and (3) to maximize the impact of the results on the educational community. Over the life of the grant, the work has thus involved basic Earth science research and information system technique understanding and development in a mutually supportive way, however, more recently it has become necessary to focus the work primarily on areas (1) and (3). During the last year, the level of effort on this grant has been reduced to half its previous value. We have also been advised that this grant will end with the current year, thus this will be the penultimate semiannual progress summary
    • …
    corecore