15,484 research outputs found

    Entanglement Entropy of the Low-Lying Excited States and Critical Properties of an Exactly Solvable Two-Leg Spin Ladder with Three-Spin Interactions

    Full text link
    In this work, we investigate an exactly solvable two-leg spin ladder with three-spin interactions. We obtain analytically the finite-size corrections of the low-lying energies and determine the central charge as well as the scaling dimensions. The model considered in this work has the same universality class of critical behavior of the XX chain with central charge c=1. By using the correlation matrix method, we also study the finite-size corrections of the Renyi entropy of the ground state and of the excited states. Our results are in agreement with the predictions of the conformal field theory.Comment: 10 pages, 6 figures, 2 table

    Composite Higgs to two Photons and Gluons

    Get PDF
    We introduce a simple framework to estimate the composite Higgs boson coupling to two-photon in Technicolor extensions of the standard model. The same framework allows us to predict the composite Higgs to two-gluon process. We compare the decay rates with the standard model ones and show that the corrections are typically of order one. We suggest, therefore, that the two-photon decay process can be efficiently used to disentangle a light composite Higgs from the standard model one. We also show that the Tevatron results for the gluon-gluon fusion production of the Higgs either exclude the techniquarks to carry color charges to the 95% confidence level, if the composite Higgs is light, or that the latter must be heavier than around 200 GeV.Comment: RevTex 7 pages, 6 figure

    Supergravity Computations without Gravity Complications

    Get PDF
    The conformal compensator formalism is a convenient and versatile representation of supergravity (SUGRA) obtained by gauge fixing conformal SUGRA. Unfortunately, practical calculations often require cumbersome manipulations of component field terms involving the full gravity multiplet. In this paper, we derive an alternative gauge fixing for conformal SUGRA which decouples these gravity complications from SUGRA computations. This yields a simplified tree-level action for the matter fields in SUGRA which can be expressed compactly in terms of superfields and a modified conformal compensator. Phenomenologically relevant quantities such as the scalar potential and fermion mass matrix are then straightforwardly obtained by expanding the action in superspace.Comment: 10 pages; v2: references update

    Critical and Multicritical Semi-Random (1+d)-Dimensional Lattices and Hard Objects in d Dimensions

    Full text link
    We investigate models of (1+d)-D Lorentzian semi-random lattices with one random (space-like) direction and d regular (time-like) ones. We prove a general inversion formula expressing the partition function of these models as the inverse of that of hard objects in d dimensions. This allows for an exact solution of a variety of new models including critical and multicritical generalized (1+1)-D Lorentzian surfaces, with fractal dimensions dF=k+1d_F=k+1, k=1,2,3,..., as well as a new model of (1+2)-D critical tetrahedral complexes, with fractal dimension dF=12/5d_F=12/5. Critical exponents and universal scaling functions follow from this solution. We finally establish a general connection between (1+d)-D Lorentzian lattices and directed-site lattice animals in (1+d) dimensions.Comment: 44 pages, 15 figures, tex, harvmac, epsf, references adde

    Anomaly Matching in Gauge Theories at Finite Matter Density

    Full text link
    We investigate the application of 't Hooft's anomaly matching conditions to gauge theories at finite matter density. We show that the matching conditions constrain the low-energy quasiparticle spectrum associated with possible realizations of global symmetries.Comment: 11 pages, 1 figure, LaTeX. Section C is corrected and added reference

    Multitasking associative networks

    Full text link
    We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzman machine and we show its thermodynamical equivalence to an associative working memory able to retrieve multiple patterns in parallel without falling into spurious states typical of classical neural networks. We focus on systems processing in parallel a finite (up to logarithmic growth in the volume) amount of patterns, mirroring the low-level storage of standard Amit-Gutfreund-Sompolinsky theory. Results obtained trough statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting biological insights. Indeed, these associative networks pave new perspectives in the understanding of multitasking features expressed by complex systems, e.g. neural and immune networks.Comment: to appear on Phys.Rev.Let

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Local-channel-induced rise of quantum correlations in continuous-variable systems

    Get PDF
    It was recently discovered that the quantum correlations of a pair of disentangled qubits, as measured by the quantum discord, can increase solely because of their interaction with a local dissipative bath. Here, we show that a similar phenomenon can occur in continuous-variable bipartite systems. To this aim, we consider a class of two-mode squeezed thermal states and study the behavior of Gaussian quantum discord under various local Markovian non-unitary channels. While these in general cause a monotonic drop of quantum correlations, an initial rise can take place with a thermal-noise channel.Comment: 6 pages, 4 figure

    Folding of the Triangular Lattice in the FCC Lattice with Quenched Random Spontaneous Curvature

    Full text link
    We study the folding of the regular two-dimensional triangular lattice embedded in the regular three-dimensional Face Centered Cubic lattice, in the presence of quenched random spontaneous curvature. We consider two types of quenched randomness: (1) a ``physical'' randomness arising from a prior random folding of the lattice, creating a prefered spontaneous curvature on the bonds; (2) a simple randomness where the spontaneous curvature is chosen at random independently on each bond. We study the folding transitions of the two models within the hexagon approximation of the Cluster Variation Method. Depending on the type of randomness, the system shows different behaviors. We finally discuss a Hopfield-like model as an extension of the physical randomness problem to account for the case where several different configurations are stored in the prior pre-folding process.Comment: 12 pages, Tex (harvmac.tex), 4 figures. J.Phys.A (in press

    Entropy of Folding of the Triangular Lattice

    Full text link
    The problem of counting the different ways of folding the planar triangular lattice is shown to be equivalent to that of counting the possible 3-colorings of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice solved by Baxter. The folding entropy Log q per triangle is thus given by Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay preprint T/9401
    • …
    corecore