17 research outputs found

    Assessment of Thyroid Function in Patients With Alkaptonuria

    No full text
    Importance: Alkaptonuria is an autosomal recessive disorder caused by pathogenic variants in the HGD gene. Deficiency of the HGD enzyme leads to tissue deposition of homogentisic acid (HGA), causing severe osteoarthropathies and cardiac valve degeneration. Although HGD is vital for the catabolism of tyrosine, which provides the basis for thyroid hormone synthesis, the prevalence of thyroid dysfunction in alkaptonuria is unknown. Objective: To assess thyroid structure and function in patients with alkaptonuria. Design, Setting, and Participants: A single-center cohort study was conducted in a tertiary referral center including patients with alkaptonuria followed up for a median of 93 (interquartile range, 48-150) months between February 1, 2000, and December 31, 2018. The alkaptonuria diagnosis was based on clinical presentation and elevated urine HGA levels. A total of 130 patients were considered for participation. Main Outcomes and Measures: Prevalence of thyroid dysfunction in adults with alkaptonuria compared with the general population. Thyrotropin and free thyroxine levels were measured by immunoassay and repeated in each patient a median of 3 (interquartile range, 2-22) times. Neck ultrasonographic scans were analyzed in a subset of participants. Logistic regression was used to test the association of thyroid dysfunction with age, sex, thyroid peroxidase (TPO) antibodies, serum tyrosine levels, and urine HGA levels. Results: Of the 130 patients, 5 were excluded owing to thyroidectomy as the cause of hypothyroidism. The study cohort consisted of 125 patients; the median age was 45 (interquartile range, 35-51) years. Most of the patients were men (72 [57.6%]). The prevalence of primary hyperthyroidism was 0.8% (1 of 125 patients), similar to 0.5% observed in the general population (difference, 0.003; 95% CI, -0.001 to 0.04; P = .88). The prevalence of primary hypothyroidism was 16.0% (20 of 125 patients), which is significantly higher than 3.7% reported in the general population (difference, 0.12; 95% CI, 0.10-0.24; P \u3c .001). Women were more likely to have primary hypothyroidism than men (odds ratio, 10.99; 95% CI, 3.13-38.66; P \u3c .001). Patients with TPO antibodies had a higher likelihood of primary hypothyroidism than those without TPO antibodies (odds ratio, 7.36; 95% CI, 1.89-28.62; P = .004). There was no significant difference in the prevalence of thyroid nodules between patients in this study (29 of 49 [59.2%]) vs the general population (68%) (difference, 0.088; 95% CI, -0.44 to 0.73; P = .20) or of cancer (7% vs 5%; difference, 0.01; 95% CI, -0.01 to 0.17; P = .86). Conclusions and Relevance: The high prevalence of primary hypothyroidism noted in patients with alkaptonuria in this study suggests that serial screening in this population should be considered and prioritized

    IRF-1 responsiveness to IFN-gamma predicts different cancer immune phenotypes

    Get PDF
    Background: Several lines of evidence suggest a dichotomy between immune active and quiescent cancers, with the former associated with a good prognostic phenotype and better responsiveness to immunotherapy. Central to such dichotomy is the master regulator of the acute inflammatory process interferon regulatory factor (IRF)-1. However, it remains unknown whether the responsiveness of IRF-1 to cytokines is able to differentiate cancer immune phenotypes. Methods: IRF-1 activation was measured in 15 melanoma cell lines at basal level and after treatment with IFN-g, TNF-a and a combination of both. Microarray analysis was used to compare transcriptional patterns between cell lines characterised by high or low IRF-1 activation. Results: We observed a strong positive correlation between IRF-1 activation at basal level and after IFN-g and TNF-a treatment. Microarray demonstrated that three cell lines with low and three with high IRF-1 inducible translocation scores differed in the expression of 597 transcripts. Functional interpretation analysis showed mTOR and Wnt/b-cathenin as the top downregulated pathways in the cell lines with low inducible IRF-1 activation, suggesting that a low IRF-1 inducibility recapitulates a cancer phenotype already described in literature characterised by poor prognosis. Conclusion: Our findings support the central role of IRF-1 in influencing different tumour phenotypes

    A Novel Risk Stratification System for Thyroid Nodules With Indeterminate Cytology—A Pilot Cohort Study

    No full text
    © Copyright © 2020 Gomes-Lima, Auh, Thakur, Zemskova, Cochran, Merkel, Filie, Raffeld, Patel, Xi, Wartofsky, Burman and Klubo-Gwiezdzinska. Background: Thyroid ultrasound (US), fine needle aspiration biopsy (FNAB), and molecular testing have been widely used to stratify the risk of malignancy in thyroid nodules. The goal of this study was to investigate a novel diagnostic approach for cytologically indeterminate thyroid nodules (ITN) based upon a combination of US features and genetic alterations. Methods: We performed a pilot cohort study of patients with ITN (Bethesda III/IV), who underwent surgical treatment. Based on standardized sonographic patterns established by the American Thyroid Association (ATA), each ITN received an US score (XUS), ranging between 0 and 0.9 according to its risk of thyroid cancer (TC). DNA and RNA were extracted from pathologic material, available for all patients, and subjected to Oncomine™ Comprehensive Assay v2 (OCAv2) next-generation sequencing. Each genetic alteration was annotated based on its strength of association with TC and its sum served as the genomic classifier score (XGC). The total risk score (TRS) was the sum of XUS and XGC. ROC curves were generated to assess the diagnostic accuracy of XUS, XGC, and TRS. Results: The study cohort consisted of 50 patients (39 females and 11 males), aged 47.5 ± 14.8 years. Three patients were excluded due to molecular testing failure. Among the remaining 47 patients, 28 (59.6%) were diagnosed with TC. BRAFV600E was the most common mutation in papillary TC, PAX8-PPARG fusion was present in NIFTP, pathogenic variants of SLX4, ATM, and NRAS were found in Hürthle cell TC and RET mutations in medullary TC. The diagnostic accuracy of XGC and TRS was significantly higher compared with XUS (88 vs. 62.5%, p \u3c 0.001; 85.2 vs. 62.5%, p \u3c 0.001, respectively). However, this increased accuracy was due to significantly better sensitivity (80.7 vs. 34.6%, p \u3c 0.001; 84.6 vs. 34.6%, p \u3c 0.001, respectively) without improved specificity (94.7 vs. 90%, p = 0.55; 85.7 vs. 90%, p = 0.63, respectively). Conclusion: Molecular testing might not be necessary in ITN with high-risk US pattern (XUS = 0.9), as specificity of TC diagnosis based on Xus alone is sufficient and not improved with molecular testing. OCAv2 is useful in guiding the management of ITN with low-to-intermediate risk US features (XUS \u3c 0.9), as it increases the accuracy of TC diagnosis

    Image microarrays (IMA): Digital pathology's missing tool

    No full text
    Introduction: The increasing availability of whole slide imaging (WSI) data sets (digital slides) from glass slides offers new opportunities for the development of computer-aided diagnostic (CAD) algorithms. With the all-digital pathology workflow that these data sets will enable in the near future, literally millions of digital slides will be generated and stored. Consequently, the field in general and pathologists, specifically, will need tools to help extract actionable information from this new and vast collective repository. Methods: To address this limitation, we designed and implemented a tool (dCORE) to enable the systematic capture of image tiles with constrained size and resolution that contain desired histopathologic features. Results: In this communication, we describe a user-friendly tool that will enable pathologists to mine digital slides archives to create image microarrays (IMAs). IMAs are to digital slides as tissue microarrays (TMAs) are to cell blocks. Thus, a single digital slide could be transformed into an array of hundreds to thousands of high quality digital images, with each containing key diagnostic morphologies and appropriate controls. Current manual digital image cut-and-paste methods that allow for the creation of a grid of images (such as an IMA) of matching resolutions are tedious. Conclusion: The ability to create IMAs representing hundreds to thousands of vetted morphologic features has numerous applications in education, proficiency testing, consensus case review, and research. Lastly, in a manner analogous to the way conventional TMA technology has significantly accelerated in situ studies of tissue specimens use of IMAs has similar potential to significantly accelerate CAD algorithm development

    High-Throughput Microdissection for Next-Generation Sequencing

    No full text
    <div><p>Precision medicine promises to enhance patient treatment through the use of emerging molecular technologies, including genomics, transcriptomics, and proteomics. However, current tools in surgical pathology lack the capability to efficiently isolate specific cell populations in complex tissues/tumors, which can confound molecular results. Expression microdissection (xMD) is an immuno-based cell/subcellular isolation tool that procures targets of interest from a cytological or histological specimen. In this study, we demonstrate the accuracy and precision of xMD by rapidly isolating immunostained targets, including cytokeratin AE1/AE3, p53, and estrogen receptor (ER) positive cells and nuclei from tissue sections. Other targets procured included green fluorescent protein (GFP) expressing fibroblasts, <i>in situ</i> hybridization positive Epstein-Barr virus nuclei, and silver stained fungi. In order to assess the effect on molecular data, xMD was utilized to isolate specific targets from a mixed population of cells where the targets constituted only 5% of the sample. Target enrichment from this admixed cell population prior to next-generation sequencing (NGS) produced a minimum 13-fold increase in mutation allele frequency detection. These data suggest a role for xMD in a wide range of molecular pathology studies, as well as in the clinical workflow for samples where tumor cell enrichment is needed, or for those with a relative paucity of target cells.</p></div

    xMD improves depth of NGS coverage in admixed cell cytospins.

    No full text
    <p>(A) Schematic image of the NGS workflow. xMD isolated targets were compared to manual macrodissection via NGS (B) Select variant evaluation of the 95% lymphoma (ST486)/5% lung carcinoma (A549) cell line specimens comparing manual macrodissection to xMD enrichment (C) Select variant evaluation of the 95% lymphoma (ST486)/5% melanoma (UACC.62) cell line specimens comparing manual macrodissection to xMD enrichment. ND = not detectable.</p
    corecore