25,838 research outputs found

    QMC and the nature of dense matter: written in the stars?

    Full text link
    We discuss the recent progress in calculating the properties of 'hybrid stars' (stellar objects similar to neutron stars, classified by the incorporation of non-nucleonic degrees of freedom, including but not limited to hyperons and/or a quark-matter core) using the octet-baryon Quark-Meson Coupling (QMC) model. The version of QMC used is a recent improvement which includes the in-medium modification of the quark-quark hyperfine interaction.Comment: 6 pages, 2 figures. To appear in the proceedings of Achievements and New Directions in Subatomic Physics: Workshop in Honour of Tony Thomas' 60th Birthday, Adelaide, South Australia, 15-19 Feb 201

    Analysis of changes in leg volume parameters, and orthostatic tolerance in response to lower body negative pressure during 59 days exposure to zero gravity Skylab 3

    Get PDF
    The cardiovascular responses of the Apollo crewmen associated with postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability to the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. This report details the equipment, signal processing and analysis of the leg volume data obtained from the M092 experiment of the Skylab 3 Mission

    The Radius of the Proton: Size Does Matter

    Full text link
    The measurement by Pohl et al. [1] of the 2S_1/2^F=1 to 2P_3/2^F=2 transition in muonic hydrogen and the subsequent analysis has led to a conclusion that the rms charge radius of the proton differs from the accepted (CODATA [2]) value by approximately 4%, leading to a 4.9 s.d. discrepancy. We investigate the muonic hydrogen spectrum relevant to this transition using bound-state QED with Dirac wave-functions and comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed.Comment: Delayed arXiv submission. To appear in 'Proceedings of T(R)OPICALQCD 2010' (September 26 - October 1, 2010). 7 pages, 1 figure. Superseded by arXiv:1104.297

    Rippled Cosmological Dark Matter from Damped Oscillating Newton Constant

    Full text link
    Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its General Relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation -> dark matter -> dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the General Relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favorably examined.Comment: RevTex4, 12 pages, 5 figures; Minor revision, References adde

    Neutron Star Properties with Hyperons

    Full text link
    In the light of the recent discovery of a neutron star with a mass accurately determined to be almost two solar masses, it has been suggested that hyperons cannot play a role in the equation of state of dense matter in β\beta-equilibrium. We re-examine this issue in the most recent development of the quark-meson coupling model. Within a relativistic Hartree-Fock approach and including the full tensor structure at the vector-meson-baryon vertices, we find that not only must hyperons appear in matter at the densities relevant to such a massive star but that the maximum mass predicted is completely consistent with the observation.Comment: Minor correction

    Applications of the Octet Baryon Quark-Meson Coupling Model to Hybrid Stars

    Get PDF
    In this study we have investigated a particular state-of-the-art model which is currently used to refine our knowledge of the workings of the strong interaction and the way that it is manifested in both neutron stars and heavy nuclei, although we have placed emphasis on the former for reasons of personal interest. The main body of this work has surrounded an effective field theory known as Quantum Hadrodynamics (QHD) and its variations, as well as an extension to this known as the Quark-Meson Coupling (QMC) model, and variations thereof. We further extend these frameworks to include the possibility of a phase transition from hadronic matter to deconfined quark matter to produce hybrid stars, using various models. We have investigated these pre-existing models to deeply understand how they are justified, and given this information, we have expanded them to incorporate a modern understanding of how the strong interaction is manifest.Comment: PhD Thesis. Deposited in the Australian Digital Theses Program and University of Adelaide Library November 2009. 161 page
    corecore