1,055 research outputs found

    Leading particle effect, inelasticity and the connection between average multiplicities in {\bf e+e−e^+e^-} and {\bf pppp} processes

    Full text link
    The Regge-Mueller formalism is used to describe the inclusive spectrum of the proton in ppp p collisions. From such a description the energy dependences of both average inelasticity and leading proton multiplicity are calculated. These quantities are then used to establish the connection between the average charged particle multiplicities measured in {\bf e+e−e^+e^-} and {\bf pp/pˉppp/{\bar p}p} processes. The description obtained for the leading proton cross section implies that Feynman scaling is strongly violated only at the extreme values of xFx_F, that is at the central region (xF≈0x_F \approx 0) and at the diffraction region (xF≈1x_F \approx 1), while it is approximately observed in the intermediate region of the spectrum.Comment: 20 pages, 10 figures, to be published in Physical Review

    An SU(3) model for octet baryon and meson fragmentation

    Get PDF
    The production of the octet of baryons and mesons in e^+ e^- collisions is analysed, based on considerations of SU(3) symmetry and a simple model for SU(3) symmetry breaking in fragmentation functions. All fragmentation functions, D_q^h(x, Q^2), describing the fragmentation of quarks into a member of the baryon octet (and similarly for fragmentation into members of the meson octet) are expressed in terms of three SU(3) symmetric functions, \alpha(x, Q^2), \beta(x, Q^2), and \gamma(x, Q^2). With the introduction of an SU(3) breaking parameter, \lambda, the model is successful in describing hadroproduction data at the Z pole. The fragmentation functions are then evolved using leading order evolution equations and good fits to currently available data at 34 GeV and at 161 GeV are obtained.Comment: 24 pages LaTeX file including 11 postscript figure file

    Clocking hadronization in relativistic heavy ion collisions with balance functions

    Get PDF
    A novel state of matter has been hypothesized to exist during the early stage of relativistic heavy ion collisions, with normal hadrons not appearing until several fm/c after the start of the reaction. To test this hypothesis, correlations between charges and their associated anticharges are evaluated with the use of balance functions. It is shown that late-stage hadronization is characterized by tightly correlated charge/anticharge pairs when measured as a function of relative rapidity.Comment: 5 pages, 3 figure

    Pion photoproduction on the nucleon in the quark model

    Get PDF
    We present a detailed quark-model study of pion photoproduction within the effective Lagrangian approach. Cross sections and single-polarization observables are investigated for the four charge channels, Îłp→π+n\gamma p\to \pi^+ n, Îłn→π−p\gamma n\to \pi^- p, Îłp→π0p\gamma p\to \pi^0 p, and Îłn→π0n\gamma n\to \pi^0 n. Leaving the πNΔ\pi N\Delta coupling strength to be a free parameter, we obtain a reasonably consistent description of these four channels from threshold to the first resonance region. Within this effective Lagrangian approach, strongly constrainted by the quark model, we consider the issue of double-counting which may occur if additional {\it t}-channel contributions are included.Comment: Revtex, 35 pages, 16 eps figures; version to appear on PR

    A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon

    Full text link
    New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a real, unpolarized photon are presented. We perform three global fits, based on the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO, adopt the so-called Fixed Flavour-Number Scheme for calculation of the heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the ACOT(chi) scheme. We examine the results of our fits by a comparison with the LEP data for the Q^2 dependence of the F_2^gamma, averaged over various x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.htm

    Anesthesia and cognitive performance in children: No evidence for a causal relationship

    Get PDF
    * Both authors contributed evenly to the manuscript Recent findings of an association between anesthesia administration in the first three years of life and later learning disabilities have created concerns that anesthesia has neurotoxic effects on synaptogenesis, causing later learning problems. An alternative hypothesis is that those children who are likely to undergo surgery early in life have significant medical problems that are associated with a vulnerability to learning disabilities. These two hypotheses were evaluated in a monozygotic concordant–discordant twin design. Data on anesthesia administration and learning abilities and disabilities were available for 1,143 monozygotic twin pairs (56 % female) from the Netherlands Twin Registry. Parents of the twins reported on anesthesia use before age 3 and again between ages 3 and 12 years. Near age 12, educational achievement and cognitive problems were assessed with standardized tests and teacher ratings. Results showed that twins who were exposed to anesthesia before age 3 had significantly lower educational achievement scores and significantly more cognitive problems than twins not exposed to anesthesia. However, there was one important exception: the unexposed co-twin from discordant pairs did not differ from their exposed cotwin. Thus, there is no evidence for a causal relationship between anesthesia administration and later learning-related outcomes in this sample. Rather, there is evidence for early anesthesia being a marker of an individual’s vulnerability for later learning problems, regardless of their exposure to anesthesia

    The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics

    Get PDF
    A longstanding limitation of first-principles calculations of substitutional alloy phase diagrams is the difficulty to account for lattice vibrations. A survey of the theoretical and experimental literature seeking to quantify the impact of lattice vibrations on phase stability indicates that this effect can be substantial. Typical vibrational entropy differences between phases are of the order of 0.1 to 0.2 k_B/atom, which is comparable to the typical values of configurational entropy differences in binary alloys (at most 0.693 k_B/atom). This paper describes the basic formalism underlying ab initio phase diagram calculations, along with the generalization required to account for lattice vibrations. We overview the various techniques allowing the theoretical calculation and the experimental determination of phonon dispersion curves and related thermodynamic quantities, such as vibrational entropy or free energy. A clear picture of the origin of vibrational entropy differences between phases in an alloy system is presented that goes beyond the traditional bond counting and volume change arguments. Vibrational entropy change can be attributed to the changes in chemical bond stiffness associated with the changes in bond length that take place during a phase transformation. This so-called ``bond stiffness vs. bond length'' interpretation both summarizes the key phenomenon driving vibrational entropy changes and provides a practical tool to model them.Comment: Submitted to Reviews of Modern Physics 44 pages, 6 figure

    Worth a Glance: Using Eye Movements to Investigate the Cognitive Neuroscience of Memory

    Get PDF
    Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia), and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and magnetoencephalography, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain–behavior relationships and adheres to the “converging evidence” approach to cognitive neuroscience

    Lambda polarization and single-spin left-right asymmetry in diffractive hadron-hadron collisions

    Get PDF
    We discuss Lambda polarization and single-spin left-right asymmetry in diffractive hadron-hadron scattering at high energies. We show that the physical picture proposed in a recent Letter is consistent with the experimental observation that Λ\Lambda polarization in the diffractive process, pp→ΛK+ppp\to \Lambda K^+p, is much higher than that in the inclusive reaction, pp→ΛXpp\to \Lambda X. We make predictions for the left-right asymmetry, A_N, and for the spin transfer, DNNΛD_{NN}^\Lambda, in the single-spin process p(↑)p→ΛK+pp(\uparrow)p\to \Lambda K^+p and suggest further experimental tests of the proposed picture.Comment: 14 pages, 3 ps-figures. Phys. Rev. D (in press
    • 

    corecore