16,451 research outputs found
Towards a unified treatment of gravitational-wave data analysis
We present a unified description of gravitational-wave data analysis that
unites the template-based analysis used to detect deterministic signals from
well-modeled sources, such as binary-black-hole mergers, with the
cross-correlation analysis used to detect stochastic gravitational-wave
backgrounds. We also discuss the connection between template-based analyses and
those that target poorly-modeled bursts of gravitational waves, and suggest a
new approach for detecting burst signals.Comment: 4 pages, no figures, published versio
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
Weak lensing evidence for a filament between A222/A223
We present a weak lensing analysis and comparison to optical and X-ray maps
of the close pair of massive clusters A222/223. Indications for a filamentary
connection between the clusters are found and discussed.Comment: 6 pages, 1 figure. To appear in Proc. IAU Colloquium 195: Outskirts
of Galaxy Clusters - Intense Life in the Suburbs. Version with higher
resolution available at
http://www.astro.uni-bonn.de/~dietrich/torino_proc.ps.g
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
Chemical evolution of star clusters
I discuss the chemical evolution of star clusters, with emphasis on old
globular clusters, in relation to their formation histories. Globular clusters
clearly formed in a complex fashion, under markedly different conditions from
any younger clusters presently known. Those special conditions must be linked
to the early formation epoch of the Galaxy and must not have occurred since.
While a link to the formation of globular clusters in dwarf galaxies has been
suggested, present-day dwarf galaxies are not representative of the
gravitational potential wells within which the globular clusters formed.
Instead, a formation deep within the proto-Galaxy or within dark-matter
minihaloes might be favoured. Not all globular clusters may have formed and
evolved similarly. In particular, we may need to distinguish Galactic halo from
Galactic bulge clusters.Comment: 27 pages, 2 figures. To appear as invited review article in a special
issue of the Phil. Trans. Royal Soc. A: Ch. 6 "Star clusters as tracers of
galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed.
LaTeX, requires rspublic.cls style fil
Two years of monitoring Supergiant Fast X-ray Transients with Swift
We present two years of intense Swift monitoring of three SFXTs, IGR
J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007).
Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed
power laws with by hard photon indices (G~1-2). Their outburst broad-band
(0.3-150 keV) spectra can be fit well with models typically used to describe
the X-ray emission from accreting NSs in HMXBs. We assess how long each source
spends in each state using a systematic monitoring with a sensitive instrument.
These sources spend 3-5% of the total in bright outbursts. The most probable
flux is 1-2E-11 erg cm^{-2} s^{-1} (2-10 keV, unabsorbed), corresponding to
luminosities in the order of a few 10^{33} to 10^{34} erg s^{-1} (two orders of
magnitude lower than the bright outbursts). The duty-cycle of inactivity is 19,
39, 55%, for IGR J16479-4514, XTE J1739-302, and IGR J17544-2619, respectively.
We present a complete list of BAT on-board detections further confirming the
continued activity of these sources. This demonstrates that true quiescence is
a rare state, and that these transients accrete matter throughout their life at
different rates. X-ray variability is observed at all timescales and
intensities we can probe. Superimposed on the day-to-day variability is
intra-day flaring which involves variations up to one order of magnitude that
can occur down to timescales as short as ~1ks, and whichcan be explained by the
accretion of single clumps composing the donor wind with masses
M_cl~0.3-2x10^{19} g. (Abridged)Comment: Accepted for publication in MNRAS. 17 pages, 11 figures, 8 table
The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift and XMM-Newton
We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057
performed during the outburst that occurred between March 23 and April 25,
2015. The source reached a peak flux of 0.7(2)E-9 erg/cm/s and decayed to
quiescence in approximately a month. The X-ray spectrum was dominated by a
power-law with photon index between 1.6 and 1.8, which we interpreted as
thermal Comptonization in an electron cloud with temperature > 20 keV . A broad
({\sigma} ~ 1 keV) emission line was detected at an energy (E =
6.9 keV) compatible with the K{\alpha} transition of ionized
Fe, suggesting an origin in the inner regions of the accretion disk. The
outburst flux and spectral properties shown during this outburst were
remarkably similar to those observed during the previous accretion event
detected from the source in 2009. Coherent pulsations at the pulsar spin period
were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible
with the value observed in 2009. Assuming that the source spun up during the
2015 outburst at the same rate observed during the previous outburst, we derive
a conservative upper limit on the spin down rate during quiescence of 3.5E-15
Hz/s. Interpreting this value in terms of electromagnetic spin down yields an
upper limit of 3.6E26 G/cm to the pulsar magnetic dipole (assuming a
magnetic inclination angle of 30{\deg}). We also report on the detection of
five type-I X-ray bursts (three in the XMM-Newton data, two in the INTEGRAL
data), none of which indicated photospheric radius expansion.Comment: 10 pages, 7 figures, accepted for publication in A&
- …
