4,744 research outputs found

    Biomechanical analysis of a cranial Patient Specific Implant on the interface with the bone using the Finite Element Method

    Full text link
    - New advance technologies based on reverse engineering , design and additive manufacturing, have expanded design capabilities for biomedical applications to include Patient Specific Implants (PSI). This change in design paradigms needs advanced tools to assess the mechanical performance of the product, and simulate the impact on the patient. In this work, we perform a structural analysis on the interface of a cranial PSI under static loading conditions. Based on those simulations, we have identified the regions with high stress and strain and checked the failure criteria both in the implant and the skull. We evaluate the quality of the design of the implant and determine their response given different materials, in order to ensure optimality of the final product to be manufactured

    Morpho-kinematic analysis of the point-symmetric, bipolar planetary nebulae Hb 5 and K 3-17, a pathway to poly-polarity

    Full text link
    The kinematics of the bipolar planetary nebulae Hb~5 and K 3-17 are investigated in detail by means of a comprehensive set of spatially resolved high spectral resolution, long-slit spectra. Both objects share particularly interesting characteristics, such as a complex filamentary, rosette-type nucleus, axial point-symmetry and very fast bipolar outflows. The kinematic information of Hb~5 is combined with {\it HST} imagery to construct a detailed 3D model of the nebula using the code SHAPE. The model shows that the large scale lobes are growing in a non-homologous way. The filamentary loops in the core are proven to actually be secondary lobes emerging from what appears to be a randomly punctured, dense, gaseous core and the material that forms the point symmetric structure flows within the lobes with a distinct kinematic pattern and its interaction with the lobes has had a shaping effect on them. Hb~5 and K~3-17 may represent a class of fast evolving planetary nebulae that will develop poly-polar characteristics once the nebular core evolves and expands.Comment: 19 pages, 8 figures. To appear in The Astrophysical Journa
    corecore