3,087 research outputs found

    Analytical and experimental investigation of fatigue in a sheet specimen with an interference-fit bolt

    Get PDF
    A fatigue analysis, based on finite-element calculations and fatigue tests, was conducted for an aluminum-alloy sheet specimen with a steel interference-fit bolt. The stress analysis of the region near the bolt hole showed that the beneficial effect of an interference-fit bolt can be interpreted as the combined result of two effects: (1) load transfer through the bolt and (2) the compressive interference stresses in the sheet. Results of the fatigue tests show that progressively higher interference levels produced longer fatigue lives. The tests also show that a high level of interference prevents fretting at the bolt-sheet interface and that interferences larger than this level produced little additional improvement in fatigue life

    An elastoplastic analysis of a uniaxially loaded sheet with an interference-fit bolt

    Get PDF
    The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole

    A method for determining local elastoplastic stress and strain in metallurgically bonded notched laminates subjected to a loading cycle

    Get PDF
    A semianalytical method was developed for determining elastoplastic cyclic stresses and strains at notch roots in metallurgically bonded metal laminates. The method is based on the Neuber equation, which was used with an effective stress-strain curve for the laminate. It was applied to laminates containing a circular hole which were subjected to one cycle of reversed loading. The laminates consisted of two elasto-perfectly-plastic materials with different yield strengths and with either equal or different Young's moduli. A laminate of high-strength titanium alloy with alternate layers of commercially pure titanium was also analyzed. The accuracy of the method was evaluated by comparing the stresses and strains with those calculated from a finite-element analysis. The results estimated by the simple method based on the Neuber equation agreed closely with the results computed from the more elaborate finite-element analysis

    Fracture mechanics analysis for various fiber/matrix interface loadings

    Get PDF
    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis

    Three-dimensional analysis of 0/90s and 90/0s laminates with a central circular hole

    Get PDF
    Stress distributions were calculated near a circular hole in laminates, using a three dimensional finite element analysis. These stress distributions were presented three ways: through the thickness at the hole boundary, along radial lines at the 0/90 and 90/0 interfaces, and around the hole at these interfaces. The interlaminar normal stress, and the shear stress, distributions had very steep gradients near the hole boundary, suggesting interlaminar stress singularities. The largest compressive stress occurred at about 60 deg from the load axis. A simple procedure was introduced to calculate interlaminar stresses near the hole boundary. It used stresses calculated by an exact two dimensional analysis of a laminate with a hole as input to a quasi three dimensional model. It produced stresses that agreed closely with those from the three dimensional finite element model

    An equation for bolt clampup relaxation in transient environments

    Get PDF
    An equation for bolt clampup relaxation for transient temperature-moisture (T-M) conditions was derived starting with a relaxation equation for steady-state conditions, and then using an incremental time approach that exploits the superposition principle for linear viscoelasticity. The resulting equation uses the initial T-M condition (at the time of clamping), the T-M history after clamping, and elastic clampup coefficients for temperature and moisture changes. For a given material and joint configuration, the clampup coefficients are constants that can be calculated by elastic analyses. The clampup equation was used to calculate the changes in clampup occurring in a T300/5208 graphite/epoxy joint exposed to a one-year history of temperature and moisture. Two cases were considered: one was a dry joint exposed to a relatively humid environment and the other was a nearly saturated joint exposed to an arid environment

    Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    Get PDF
    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests

    Stress-concentration factors for finite orthotropic laminates with a circular hole and uniaxial loading

    Get PDF
    Stresses were calculated for finite-width orthotropic laminates with a circular hole and remote uniaxial loading using a two-dimensional finite element analysis with both uniform stress and uniform displacement boundary conditions. Five different laminates were analyzed. Computed results are presented for selected combinations of hole diameter/sheet-width ratio d/w and length-to-width ratio L/w. For small L/w values, the stress-concentration factors K sub tn were significantly different for the uniform stress and uniform displacement boundary conditions. Typically, for the uniform stress condition, the K sub tn values were much larger than for the infinite strip reference condition; however, for the uniform displacement condition, they were only slightly smaller than for this reference. The results for long strips are also presented as width correction factors. For d/w less or = 0.33, these width correction factors are nearly equal for all five laminates

    Combined bearing and bypass loading on a graphite/epoxy laminate

    Get PDF
    A combined experimental and analytical study was conducted to determine the behavior of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Single-fastener quasi-isotropic specimens were loaded at various bearing-bypass ratios until damage was produced at the fastener hole. Damage-onset strengths and damage modes were then analyzed using local hole-boundary stresses calculated by a finite-element analysis. The tension data showed the expected linear interaction for combined bearing and bypass loading with damage developing in the net-section tension mode. However, the compression bearing-bypass strengths showed an unexpected interaction involving the bearing mode. Compressive bypass loads reduced the bearing strength by decreasing the bolt-hole contact arc and thus increasing the severity of the bearing loads. The bearing stresses at the hole boundary were not accurately estimated by superposition of the stress components for separate bearing and bypass loading. However, superposition produced reasonably accurate estimates for tangential stresses especially near the specimen net-section

    Bolt clampup relaxation in a graphite/epoxy laminate

    Get PDF
    A simple bolted joint was analyzed to calculate bolt clampup relaxation for a graphite/epoxy (T300/5208) laminate. A viscoelastic finite element analysis of a double-lap joint with a steel bolt was conducted. Clampup forces were calculated for various steady-state temperature-moisture conditions using a 20-year exposure duration. The finite element analysis predicted that clampup forces relax even for the room-temperature-dry condition. The relaxations were 8, 13, 20, and 30 percent for exposure durations of 1 day, 1 month, 1 year, and 20 years, respectively. As expected, higher temperatures and moisture levels each increased the relaxation rate. The combined viscoelastic effects of steady-state temperature and moisture appeared to be additive. From the finite-element analysis, a simple equation was developed for clampup force relaxation. This generalized equation was used to calculate clampup forces for the same temperature-moisture conditions as used in the finite-element analysis. The two sets of calculated results agreed well
    corecore