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BOLT CLAMPUP RELAXATION I N  A GRAPHITEIEPOXY LAMII-ATE 

K. N. Shivakumar* and John H. Crews, Jr.** 
NASA Langley Research Center 

Hampton, V i rg in ia  23665 

SUMMARY 

A simple bo l ted  j o i n t  was analyzed t o  ca lcu la te  b o l t  clampup re laxa t i on  

f o r  a graphitelepoxy (T300/5208) laminate. This study was based on a visco- 

e l a s t i c  f in i te-element analysis o f  a double-lap j o i n t  w i t h  a s teel  bo l t .  

Clampup forcer were calculated f o r  various steady-state temperature-moisture 

condi t ions uslng a 20-year exposure durat ion. 

The f i n i  te-element analysis predicted tha t  clampup forces re iax  even f o r  

the room-temperature-dry condit ion. The re laxat ions were 8, 13, 20, and 

30 percent f o r  exposure durat ions o f  1 day, 1 month, 1 year, and 20 years, 

respective1 y .  As expected, higher temperatures and moisture l eve l  s each 

increased the re laxa t ion  ra te .  The combined v i  scoelast ic  e f fec ts  o f  steady- 

s ta te  temperature and moisture appeared t o  be addi t ive.  

From the f in i te-e lement  analysis, a simple equation was developed f o r  

clampup force re laxat ion.  F i r s t ,  the equation was postulated t o  have the 

same funct ional  form as the inverse o f  the mater ia l  compliance i n  the th i ck -  

ness d i rect ion.  Second, the two constants i n  the equation were f i t t e d ,  by a 

1 east-square regression analysis , t o  the room-temperature-dr.y resu l ts .  

F i  nai l y  , the equation was generalized t o  inc lude temperature and moisture 

v iscoelast ic  e f fec ts  by using m ~ t e r i a l  hygrothermal s h i f t  fac tors  froin the 

1 i terature. This general iz :  d equation was used t o  ca lcu la te  clampup forces 
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fo r  the same temperature-moisture condit ions as used i n  the f i n i  te-element 

analysis. The two sets o f  calculated resu l t s  agreed we1 1 .  

The clampup equation was fu r the r  evaluated by comparing calculated and 

measured clampup forces. Instrumented (strain-gaged) b o l t s  were monitored 

througk3ut a 100-day t e s t  period. Three steady-state t e s t  environments were 

used: room-temperature dry, room temperature w i t h  a laboratory ambient mois- 

tu re  leve l  (0.46 percent), and an elevated-temperature ( 6 6 O C )  dry case. The 

equation agreed reasonably we1 1 w i t h  the t e s t  data. 



I NTRODUCT LON 

Recent studies have shown tha t  b o l t  clampup improves the st rength of com- 

posi te j o i n t s  [l , Z ] .  This improvement, however, may decrease somewhat if the 

b o l t  clampup forces re lax  under long-term exposure. Resin-based composites are 

v iscoelast ic  a t  room temperature 1 3 3 ,  and t h i s  behavior i s  even more pronounced 

a t  high temperatures and moisture leve ls  [4 ] .  The clampup forces should be 

especia l ly  suscept ible t o  t h i s  v i scoe las t i c i  t y  because they act  i n  the res in -  

dominated thickness d i rec t ion .  This concern rd ises several questions : 

(1 ) W i :  1 the i n i t i a l  clampup force remain unchanged? (2 )  If not,  how much 

re laxat ion  occurs during the l i f e  o f  the jo ; r , t?  (3) What are the e f fec ts  of 

high temperature and moisture on re laxa t ion? This paper examines these 

questions. 

A double-lap bo l ted  j o i n t  i n  a graphi telepoxy (Er /Ep)  la.,iinate was ana- 

lyzed. The j o i n t  c ~ n s i s t e d  o f  T300/52C8 Gr/Ep laminates w i th  a 32-ply quasi- 

i so t rop i c  layup. The j o i n t  clampup force was calculated f o r  d i f f e r e n t  exposure 

durations using a l i n e a r  v iscoe las t ic  f in i te-element analysis.  The analys is  

was ca r r i ed  out f o r  a t o t a l  exposure durat ion o f  20 years using several steady- 

s ta te  temperature and moisture condit ions . 
I n  add i t ion  t o  the f i n i  te-element analysis, an equation was developed f o r  

clampup force as a funct ion u f  time, mater ia l  p rorer t ies ,  and i n1  t i a l  clampup 

force. Constants i n  t h i s  equation were obtained by f i t t i n g  i t  t o  f i n i t e -  

element resu l t s  using a least-square regression analysis.  The equation was 

then generalized t o  ca lcu la te  the viscoel as t i c  ef fects o f  temperature and moi s- 

tu re  hy using hygrothermal s h i f t  factors.  



To evaluate the equation, c l  ampup re laxat ion  tes ts  were conducted fo r  

three steady-state envi ronments . They were room-temperature dry, room- 

temperature ambient (0.46 percent n - ~ i  s tu re)  , and elevated-temperature (66'C) 

dry. I n  each case, the t e s t  durat ion was 100 days. 

SYMBOLS 

a~~ hygrothermal s h i f t  f ac to r  

2 
Do e l a s t i c  compliance, m /N 

"t time-dependent comp! i ance, m 2 / ~  

v iscoe las t ic  compliance constant, see Eq. (1 ) 

d b o l t  hole diameter, mn 

E modulus, N/m 2 

Fo e l a s t i c  clampup force, N 

t time-dependent c l  ampup force, N 

1 v iscoe las t ic  clampup force constant 

G shear modulus, N/m 2 

M moi sture content, percentage o f  laminate weight 

m,N constant parameters 

n v iscoelast ic  power law constant 

t exposure time, minutes 

v Poisson's r a t i o  

Subscripts 

1 long i tud ina l  ( f i b e r )  d i r e c t i o n  

2 transverse (across the f ibers )  d i r e c t i o n  



DESCRIPTION OF THE PROBLEM 

Fig. 1 (a) shows the double-lap bo l ted  j o i n t  i n  a graphite/epoxy laminate. 

The j o i n i n g  was by a steel  b o l t  w i t h  6.35-mn (0.25-in) diameter (d). The 

j o i n t  had an edge distance of 4d and width o f  8d. The s tee l  washers had 

12.5-mn (0.5-in) diameter and 1.3-mn (0.052-in) th ick .  The same j o i n t  con- 

f igura t ion  and mater ia ls  were used i n  both the analyses and tes ts .  

Because the laminate was quasi - isot ropic  and the b o l t  clampup loading was 

axisymnetric about the b o l t  axis, the j o i n t  was idea l ized as an axisymnetric 

problem. The hatched region i n  Fig. 1 (b)  was modeled i n  the f in i te-e lement  

analysis.  

The f in i te-e lement  analysis was ca r r i ed  ou t  f o r  three temperatures: 23°C 

(73°F room temperature), 66°C (150°F), and 121°C (250°F). Four moisture con- 

d i t i o n s  (M) were used: 0.0 percent (dry) ,  0.5 percent, 1.0 percent, and 

1.5 percent (saturated).  This analysis assumed steady-state condl t l ons  , t h a t  

i s  , the 1 aminate temperature and moisture remained unchanged throughout the 

analysis. The clampup re laxat ion  tes ts  were conducted f o r  an i n i t i a l  torque 

o f  5.65 N - m  (50 ina lb ) .  

V I SCOELAST I C ANALYSIS 

The analysis consisted o f  three parts.  F i r s t ,  the 1 inear  v iscoe las t ic  

proper t ies were generated for  the T300/5208 Gr/Ep composites. Next, these 

proper t ies were used i n  the f i n i  te-element (F-E) analysis t.o ca lcu la te  b o l t  

clampup forces f o r  d i f f e r e n t  temperature and moisture condit ions. F ina l l y ,  

a  simple equation f o r  b o l t  clampup force was developed using the F-E r e s ~ l  t s  

and a l e a s t - s q ~ a r e  regression analysis.  



Mater ia l  Character izat ion 

The laminate p roper t ies  needed f o r  the  present ana lys is  were ca l cu la ted  

s t a r t i n g  w i t h  the  f i b e r  and ma t r i x  p roper t ies .  The micromechanics procedure 

from Ref. 5 was used f i r s t  t o  generate the  lamina e l a s t i c  p roper t ies  from the  

f i b e r  and ma t r i x  behavior, and then t o  generate the  l i imina v i scoe las t i c  pro- 

per t ies .  These lamina p roper t ies  were used i n  the  laminat ion theory t o  ca lcu-  

l a t e  the needed laminate p roper t ies .  These ca l cu la t i ons  were based on the 

fo l low ing  usual assumptions [4]: 

1. The f i b e r s  a re  e l a s t i c .  

2. The ma t r i x  i s  l i n e a r  v i scoe las t i c .  

3. The composite obeys hygrothermal s h i f t  f ac to r  r u l es .  

4. V iscoe las t i c  response depends on ly  on t ,e t ime ,>lapsed s ince  load 

app l i ca t ion .  

5ince a l l  f l b e r  p roper t ies  were n o t  ava i lab le ,  an inverse  technique was 

f o l  lowed t o  ca l cu la te  them. Lamina p roper t ies  from Ref. 6 and e l a s t i c  r e s i n  

p roper t ies  from Ref. 7 were used i n  micromechanics equations [5] t o  c a l c u l a t e  

the f i b e r  p roper t ies  by i t e r a t i o n .  These r e s u l t s  a re  presented i n  Table 1  

together w i t h  the e l a s t i c  p roper t ies  o f  the r e s i n  and those computed f o r  the 

1  ami na and 1  ami na te .  

As repor ted i n  Ref. 7, the  e f f e c t i v e  time-dependent compl iance Dt f o r  

the 5208 epoxy r e s i n  can be represented by a  power-law equation. For the 

room-temperature-dry (RTD) case 



where 

Do = e l a s t i c  compliance 

Dl = ~ i s ~ ~ e l a ~ t i ~  compliance constant f o r  the RTD case (Ill = 0.10, 

Ref. 7 )  

n = v i scoe las t i c  power-law exponent ( n  = 0.2 20.04, Ref. 7 )  

t = elapsed t ime a f t e r  loading, minutes 

E Q .  ( 1 )  was general ized t o  account f o r  the  e f f e c t s  of  temperature and 

moisture by us ing hygrothermal s h i f t  fac to rs ,  aTH (see, f o r  example, Ref. 6),  

and assumption 3. The time-dependent compliance f o r  a g iven temperature and 

moisture cond i t i on  was then expressed as 

As p rev ious ly  mentioned. Do depends on temperature and moisture, bu t  Dl i s  

a constant, determined from the  2TD reference case. Tne Do an" 31/(aTH)n 

values f o r  d i f f e r e n t  temperatures were taken from Ref. 7. For the d i f f e r e n t  

moisture condit ions, the  s h i f t  f ac to r s  aTH were taken from Ref. 9. The 

v i scoe las t i c  parameters used a re  g iven i n  Table 2. The des i red time-dependent 

modulus was ca lcu la ted  as the inverse o f  Dt from Eq. (2 ) .  

As mentioned a1 ready, v i  scoe las t i c  p roper t ies  of the 1 amina were c a l  cu- 

l a t e d  using e l a s t i c  f i b e r  p roper t ies  (see Table 1 )  and v i scoe las t i c  r e s i n  pro- 

pe r t i es  through micromechanics equations [6]. The laminate p roper t ies  were 

obtained using laminat ion theory [ l o ] .  These p roper t ies  were then used i n  a 

v i scoe las t i c  F-E ana lys is  t o  ca l cu la te  clampup force and i t s  re laxaLion.  



F i n i  te-Eleiiient Analysis 

The general purpose v i s c o e l a s t i c  f i n i  te-element program VISCEL [I 11 was 

used i n  the  analys is .  The analys is  was checked by so l v i ng  the two examples 

given i n  Ref. 12. 

F i i ~ i  te-Element Procedure--An i dea l  i z a t i o n  o f  the  j o i n t  i s  shown i n  

Fig. 2(a).  Thc l i n e  OZ represents t he  b o l t  ax is ,  which i s  a l so  the  a x i s  o f  

r o t a t i o n  f o r  the  present assumption o f  a x i a l  symnetry. The j o i v t  midplane i s  

represented by OX. The x displacements were res t ra i ned  along OZ and z 

displacements were res t ra i ned  along OX. For s i m p l i c i t y ,  t he  washer was con- 

s idered as a p a r t  o f  the  b o l t  head. The i n t e r f a c e  BC between b o l t  head and 

the laminate was assumed t o  be smooth, so i t  c a r r i e d  on l y  normal stresses. 

The hole surface AB was t r ea ted  as s t ress  f r e e  because a p re l im ina ry  analy- 

s i s  showed t h a t  x displacements along t h i s  sur face were l e s s  than one-hal f  

the clearance f a r  a Class I f i t  (about 0.19 mn f o r  the  present case). The 

ou te r  boundary DE was res t ra i ned  against  x displacements . 
The F-E n d e l  i s  shown i n  Fig. 2 (b )  as four-noded axisymnetr ic elements. 

The s tee l  b o l t  i s  represented by e l a s t i c  eiements and t he  laminate was modeled 

by v i scoe las t i c  elements. The clampup force was in t roduced by apply ing an 

i n i t i a l  displacement Vo i n  L :e negat ive z d i rec t i on ,  as shown. This  d i s -  

placement was constant dur ing t h i  s time-dependent ana lys is  . 
A p re l im inary  e l a s t i c  analys is  was made t o  study two d i f f e r e n t  F-E meshes. 

Clampup forces were ca lcu la ted  from the  Fig.  2(b)  mesh having 150 elements 

w i t h  193 nodes ana from anothei* mesh Laving 254 elements w i t h  308 nodes. The 

two forces d i f f e r e d  by o n l j  about 0.3 percent; hence. the F ig .  2(b)  mesh was 

adopted f o r  the present analysis.  



To s e l e c t  a proper t i m e - i t ~ t e r v a l  scheme f o r  the  v i s c o e l a s t i c  analys is ,  a 

convergence study was made w i t h  th ree  d i f f e r e n t  t ime - i n te r va l  schemes. The 

f i r s t  scheme was based on doubl ing t he  prev ious t ime i n t e r v a l .  The t ime i n t e r -  

va ls  were doubled s t a r t i n g  from t = 0.60 minutes, t o  y i e l d  0.60, 1.2, 2.4, 

4.8 . . . minutes. This scheme was considered because the  5208 r e s i n  compli- 

ance fo l lows  a power law i n  the  t ime domain. Hence, accurate r e s u l t s  would be 

expected us ing t h i s  scheme [ll]. The o the r  two schemes had the  same s t a r t i n g  

t ime b u t  smal ler t ime i n t e r v a l s .  A ve ry  c lose  agreement was found f o r  the  

three schemes. As a r e s u l t ,  t h e  doubl ing scheme was used i n  a l l  subsequent 

analyses. These ca lcu la t ions  were terminated when t he  doubl i n g  t ime scheme 

reached about 20 years. 

Fini te-Element Results--As p rev ious ly  mentioned, clampup fo r ce  r e l a x a t i o n  

was ca lcu la ted  f o r  d i f f e r e n t  steady-state combinations o f  temperature and mois- 

ture.  The clampup force was obtained by summing the b o l t  nodal forces needed 

t: m a i n t i i n  the displacement V, snown i n  F ig .  2(b). The resul t ;  are pre- 

sented as normalized clampup fo r ce  versus exposure t ime, expressed i n  hours f o r  

convenience. The normal i r e d  clampup fo r ce  : s the  r a t i o  o f  c lampup fo r ce  Ft 

a t  t ime t and the  e l a s t i c  ( i n i t i a l )  clampup fo rce  Fo. The curves of clampup 

fo rce  versus exposure t ime are r e f e r r e d  t o  as clampup r e l a x a t i o n  curves. 

Fig.  3 shows clampup re l axa t i on  curves f o r  th ree  temperatures, namely 

23°C (room temperature), 66"C, and 121°C. The laminate i s  d r y  i n  a l l  three 

cases. Selected f in i te -e lement  r e s u l t s  are represented by symbols. (TVje 

curves represent r e s u l t s  from an equation, which w i l l  be explained i n  the  next 

sect ion.)  The r e s u l t s  i n  F ig .  3 i nd i ca te  t h a t  clampup force re laxes even a t  

room temperature. Relaxat ions o f  8 percent, 12 percent, 20 percent,  and 



30 percent a re  shown f o r  exposure times o f  1 day, 1 month, 1 year, and 

20 years, respec t i ve ly .  The r a t e  o f  clampup r e l a x a t i o n  increases w i t h  temper- 

atures, as expected, and clampup re l axa t i on  f o r  66OC and 121°C a re  36 percent 

and 54 percent, respec t i ve ly ,  d t  20 yesrs o f  exposure. The 66OC (150°F) t ' t i  

perature was se lected because i t  was considered t o  be an extreme sk in  t . ~ e r -  

a tu re  f o r  comnercial t r anspo r t  a i r c r a f t .  Simi 1 a r l y .  the  121 "C (250°F) was 

considered t o  be the maximum temperature f o r  T30015208 GrIEp appl i c a t i o n s .  

Fig. 4 shows clampup r e l a x a t i o n  curves f o r  room temperature w i t h  f b u r  

moisture condi t ions ; 0.0 percent, 0.5 percent, 1.0 percent,  and 1.5 percent. 

The ou te r  curves represent the  two extreme mois ture condi t ions,  namely, d ry  

ai!d saturated (1  . 5  percent ) .  As expected, the c l  ampup re1 a:tati on Increases 

w i t h  laminate moisture. A f t t  20 years o f  exposure, the  r e l a x a t i o n  i s  30 per-  

cent f o r  the d ry  cond i t i on  and 63 percent f o r  the saturated cond i t ion .  I n  

t y p i c a l  app l i ca t ions  , however, laminates r a r e l y  reach sa tu ra t ion .  Depending 

on the ambient r e l a t i v e  humid i ty  and temperature, laminates t y p i c a l l y  a t t a i n  

a moisture content o f  about 0.4 percent t o  0.6 percent [13] o f  t h e i r  t o t a l  

weight. 

Fig. 5 shows clampup r e l a x a t i o n  f o r  66OC, again w i t h  f o u r  mois ture con- 

d i t i o n s :  0.0, 0.5, 1.0, and 1.5 percent. Clampup r e l a x a t i .  :s f o r  the  f ou r  

condi t ions a re  about 36, 49, 60, and 71 percent, respec t i ve ly ,  fo .  20 years o f  

exposure. Comparing the r e s u l t s  i n  t h i s  f i gu re  w i t h  tho,, i n  Figs.  3 and 4 

shows t h a t  the  combined e f f e c t s  of temperature and mois ture a re  a d d i t i v e .  

That i s ,  us ing the  room-temperature-dry case as a reference, the temperature 

e f f e c t s  ,n  F ig .  3 can be added t o  the mois ture e f f e c t s  i f 1  F ig .  4 t o  ob ta i n  the 

pred ic ted combined e f f e c t s  shown i n  F ig .  5. This r e s u l t  fo l lows d i r e c t i y  from 

the s h i f t - f a c t o r  approach used i n  the present v i scoe las t i c  analys is .  



Equation f o r  Clampup Force 

The proposed equat ion fo r  time-dependent clampup fo r ce  was i n s p i r e d  by 

Eq. ( I ) ,  discussed e a r l i e r  f o r  r e s i n  ma t r i x  compliance Dt. 

For the  b ~ l  t ed  j o i n t ,  the  v i s c o e l a s t i c  r e s i n  acts  together  w i t h  the  e l a s t i c  

f i b e r s  and s tee l  b o l t  t o  govern t h e  clampup re l axa t i on .  The transverse f l e x i -  

b i l i t y  (compliance) o f  the  j o i n t  can a l so  be expressed by a power law as 

Because the f l e x i b i l i t y  and t he  clampup fo r ce  a re  i nve rse l y  re la ted ,  we can 

express the  clampup force Ft as 

where 

0 
= e l a s t i c  clampup force 

F1 = v i scoe las t i c  clampup constant 

N = exponent constant 



The constants F1 and N were e v a l u a ~ a d  us ing a least-square regress ion 

ana lys is  w i t h  F-E r e s u l t s  f o r  the RTD case shown e a r l i e r  i n  Fig.  3. F1 was 

0.01.78 (based on t i n  minutes) and N was 0.20. Th is  N value I s  t he  

same as the n used i n  Eq. ( I ) ,  as might be expected. Hence, N i n  the 

previous equat ion i s  replaced by n. 

Normalizing t h i s  equation y i e l d s  

Eq. ( 5 )  i s  shown i n  F ig .  3 f i t t e d  t o  the RTD F-E resu l t s .  This equat ion pacses 

through each F-E p o i n t  and there fo re  appears t o  adequately descr ibe t he  clampup 

re l axa t i on  f o r  t h i s  reference RTb case. 

Eq. (5 )  was f i t t e d  t o  other F-E r e s u l t s  f o r  d i f f e r e n t  temperatures and 

moistures. An ana lys is  o f  these f i t s  suggested t h a t  Eq. (4 )  could be general-  

i zed  by us!ng the  s h i f t - f a c t o r  approach. hccord ing ly ,  Ft f o r  a g i v m  

tempet.*A.ure-moisture cond i t i on  was expressed as 



The aTT values used i n  t h i s  equation were the same as t h j s e  used i a  Eq. (2 )  

fo r  Dt and are given i n  Table 2. 

The sol i d  curves i n  Fig. 3 represent the resu l t s  obtaf ned from Eq. (6)  

f o r  66°C and 121 "C. The symbols represent the F-E resu l t s  d i  scdssed e a r l  i e r .  

For the 121°C condit ion, the equation s l i g h t l y  underestimates the force com- 

pared t o  F-E analysis. But, i n  general, the equation arrees very c lose l y  w i t h  

the F-E resu l ts .  

Fig. 4 shows resu l t s  fo r  room temperature w i t h  the four - .o is tu re  condi- 

t ions.  Again the dashed curve represents Eq. ( 5 )  f i t t e d  t o  the RTD F-E 

rdsul t s .  The s o l i d  curves come from Eq. (6) and agree qu i te  we l l  w i t h  the 

F-E resu l ts .  Fig. 5 shows the c lose agreement a lso  found f o r  the  66OC 

condi t ion .  

To examine the va r ia t i on  o f  F1 w i t h  j o i n t  thickness, two other j o i n t  

thicknesses were analyzed. These j o i n t s  had 64 and 128 p l i es ,  one being 

thinner than the 96-ply j o i n t  already discussed and the other  being th icker .  

They were a l l  analyzed by the same procedure. Values o f  F1 were calculated 

t o  be 0.0183 fo r  64-ply and 0.0174 f o r  12-ply j o i n t  thicknesses. These d i f -  

f e r  from the 96-ply value o f  F = 1 7  by only  2.8 percent and -2.2 per- 

cent, respect ively.  Hence, F1 = 0.0178 was assumed v a l i d  over a range of 

j o i n t  thicknesses. 

This study shows tha t  i f the mater ia l  compl iance can be def ined by 

n 
Dt = Do + D 1 t  and the mater ia l  obeys the s h i f t - f a c t o r  ru les,  then the corre- 

sponding clampup re laxat ion  can be calculated from 



f o r  any steady-state temperature and mois ture cond i t ion .  

CLAMPUP RELAXAT ION TESTS 

Test Procedure 

The t es t s  were conducted t o  evaluate t he  v i s c o e l a s t i c  analys is .  Three 

t e s t  condi t i ons  were se lected : room-temperature d r y  (RTD) , room-temperature- 

ambient mois ture content (RTA) , and elevated-temperature d r y  (ETD) . The t e s t  

specimen con f igura t ion  was the same as the one used i n  the  F-E ana lys is  (see 

F ig .  1 ) .  Three r e p l i c a t e  tes:; were conducted i n  each cond i t ion .  

Before t es t i ng ,  some o f  the  specimens were precondit ioned. Specivens 

f o r  the  RTA cond i t ion  were taken from a mater ia l  stock t h a t  had been s to red  

i n  the labora to ry  f o r  about 2 years. Desorption t e s t s  showed t h a t  t h i s  stock 

had about 0.46-percent mois ture based on laminate weight. Specimens f o r  the  

dry t e s t  cond i t ion  were taken from the  s a w  labora to ry  stock and were care- 

f u l l y  d r i e d  f o r  about 100 days. These d ry  specimens were then s to red  i n  a 

des iccator  cabinet u n t i  1 tested. 

B o l t  ~i ampup forces were measured by comnerc ia l ly  avai  l a b l e  instrumented 

bo l t s .  These b o l t s  had an a x i a l  ho le  con ta in ing  a s t r a i n  gage br idge, c a l i -  

brated t o  measure a x i a l  b o l t  load. A chamfered washer was used under the 

b o l t  head t o  accomnodate the small f i l l e t  between the  b o l t  head and shank. 

This washer and the  one under the  nu t  were po l ished t o  get  good sur face con- 

t ac t .  Each b o l t  assembly rJas "preaged" [14] by repeatecr to rqu ing  us ing dummy 

specimens. 



i h e  bo l t s  were i n i t i a l l y  torqued t o  about 5.65 N-m (50 i n s l b ) .  This 

torquing operat ion required only  about 10 seconds, and the f i r s t  clampup meas- 

urement was made immediately a f t e r  b o l t  torquing. The clampup force wds then 

measured per iod ica l  l y  throughout the 100-day t e s t  period. 

The three t e s t  condit ions required s l  i g h t l y  d i  f f e r e n t  t e s t  procedures. 

I n  RTA tests, specimens were simply torqued and placed on a laboratory work 

bench. However, i n  the KTD tests, the specimens were torqued and then 

returned t o  the desiccator cabinet. I n  each ETD test ,  a dry specimen was 

slowly heated t o  thermal equ i l ib r ium a t  66°C using a small laboratory oven. 

Then, the b o l t  wds torqued froni outside the oven using a long socket exten- 

sion, inser ted through a small access hole i n  the oven. The ETD specimens 

re~iiained i n  the oven a t  66°C throughout the 100-day t e s t  period. 

Ref. 14 showed tha t  the b o l t  clanipup forces re lax  s l i g h t l y  even i n  the 

absence o f  mater ial  v i scoe las t i c i t y .  To account f o r  the presence of t h i s  

"embedrient" re laxat ion,  several add i t iona l  tests  were conducted. I n  these 

tests, a s teel  p l a t e  was used i n  g!;;e o f  the laminates. These t.ests were 

conducted a t  room temperature using the procedure j u s t  described. 

Trst Results 

Because the 6.35-mn i ns  truniented bo! t s  had hol 1 ow shanks (3.90-ml i n t e r -  

nal diameter), t h e i r  ax ia l  s t i f f n e s s  was sonlewhat snialler than the solid-shank 

bo l t s  i n  the F-E  analysis.  To occount f o r  t h i s ,  the F-E progranl was rerun 

usinq a hollow b o l t  f o r  the RTD reference case. Again, Eq. ( 4 )  was f i t t e d  t o  

these RTD resu l t s  t o  determine F .  This new value of F1  = 0.0147 ( t in*  i n  

niinutes) was used when the clampup equation was compared w i th  t e s t  resu l t s .  



Fig. 6 shows r e s u l t s  f o r  the  RTD cond i t ion .  The symbols represent aver- 

ages from three r e p l  i c a t e  t es t s  conducted f o r  100 days. The th ree  curves 

represent Eq. ( 6 )  f o r  n = 0.16, 0,20, and 0.24. Ref. 7 repor ted  t h a t  n 

var ies  over t h i s  range f o r  5208 epoxy. Because n was no t  measured f o r  the  

t e s t  mater ia l ,  t h i s  range o f  values was used i n  the ca l cu la t i ons .  The calcu- 

l a t ed  re l axa t i on  f o r  n = ,.20 agrees w e l l  w i t h  the  measured r e s u l t s  i n  F ig .  6. 

For 100 days o f  exposure, the  ca lcu la ted  fo rce  had re laxed t o  about 86 percent 

o f  i t s  i n i t i a l  value, compared t o  d measured value o f  about 88 percent. 

Throughout the 100-day per iod, t he  th ree  r e p l  i c a t e  t e s t s  agreed c l o s e l y  w i t h  

one another. The maximum s c a t t e r  was l e s s  than ?I percent o f  the average 

values. Also, the average instrument d r i f t  a t  the  end of the 100-day t e s t  was 

found t o  be less  than 1 percent when the  . j o i n t s  were unclamped. The d r i f t  

co r rec t i on  was appl fed on l y  t o  the  100-day t e s t  r e s u l t .  These s c a t t e r  and 

d r i f t  values were a l s o  t y p i c a l  o f  those found i n  the RTA and ETD t es t s .  

F ig .  7 shows the  RTA r e s u l t s .  The s o l i d  curves wpresen t  Eq. ( 6 )  f o r  

three n values w i t h  the  RTA t e s t  condit ions--room temperature w i t h  0.46- 

percent moisture (aTH = 0.12). Ttie upper and lower curves bracket  t he  t e s t  

r esu l t s .  Except f o r  the  l a s t  two data ~ o i n t s ,  t he  n = 0.20 curve c l o s e l y  

p red i c t s  the t e s t  r esu l t s .  A f t e r  100 days, the  computed clampup had re laxed 

t o  81 percent, bu t  the corresponding measured value was 86 percent.  The d i s -  

crepancy between the ca lcu la ted  and measured forces may have been caused by 

moisture absorpt ion dur ing the  RTA tes ts .  Because ne i t he r  temperature nor  

htrmidi t y  was con t ro l  led, " t r ave le r "  coupons accompanied the  RTA t e s t  specimens 

t o  monitor t h e i r  moisture l e v e l .  The t r a v e l e r  coupon weights increased by 

about 0.2 percent dur ing  the 100-day t e s t  per iod.  Although the  compressed 



materi,' under the clamped b o l t  probably d i d  no t  absorb 0.2-percent mois ture 

[ I S ] ,  even a smal ler moisture increase could produce enough swel l  i n g  t o  

account f o r  the clanrpup discrepancy shown i n  F ig .  7. 

The embedment r e l a x a t i o n  t e s t s  a t  room temperature showed t h a t  clampup 

re laxed on lv  t o  about 97 percent, and t h i s  s t a b i l i z e d  value was reached i n  

about 10 days. Although these embedment t e s t s  w i t h  a s tee l  b lock my no t  be 

d i r e c t l y  app l i cab le  t o  a composite j o i n t ,  they do suggest t h a t  embedment 

r e l a x a t i o n  was sniall compared t o  the v i scoe las t i c  re lax- . t ion.  

The computed and measured r e s u l t s  f o r  the  ETD case a re  presented i n  

Fig. 8. The computed curves bracket the  t e s t  data, bu t  again the  c o r r e l a t i o n  

de te r io ra ted  toward the end o f  the t e s t .  Some o f  the  discrepancy between the  

ca l cu l? ted  and measured r e s u l t s  nlay be caused by the s h i f t  f a c t o r  used f o r  the 

ETD case. A l l  s h i f t  f ac to r s  used i n  t h i s  study were taken from the  1 i t e r a t u r e  

and there fo re  may no t  apply p rec i se l y  t o  the t e s t  mate r ia l .  However, a more 

l i k e l y  source of  the discrepancy i s  nloisture absorpt ion dur ing  the  ETD t es t s .  

As pre. lous ly  described, d r y  specimens were placed i n  an oven which was main- 

ta ined  a t  66°C dur ing  the  130-day ETD t es t .  The r e l a t i v e  humid i ty  i n s i d e  the 

oven, however, was no t  con t ro l l ed .  Furthermore, the oven had several  small 

access holes t h a t  al lowed moisture t o  enter .  The r e l a t i v e  humidi ty i n s i d e  the 

oven wls s t ~ n ~ t e d  t o  be about 9 percent (us ing averaoe values f o r  labora to ry  

tenV-yature and humidi ty dur ing  the t e s t  per iod)  and t he  c.jrresponding equi - 
1 i b r i u n  mois ture l eve l  was 0.13 percent.  As a r e s u l t ,  the clampcd specimens 

could have absorbed ~ r o i s t u r e  dur ing the t e s t .  The associated swe l l i ng  would 

tend t o  c o ~ ~ n t e r a c t  the v i scoe las t i c  clampup re1 axat ion. 



CONCLUDING REMARKS 

A double- lap bo l t ed  j o i n t  i n  a laniinate (T30015208 graphi  te lepoxy)  was 

analyzed t o  ca l cu la te  the r e l a x a t i o n  o f  b o l t  clampup force. A v i scoe las t i c  

f i n i te -e lement  program was used i n  t h i s  ana lys is  t o  c a l c u l a t e  the  clampup 

force r e l a x a t i o n  a t  d i f f e r e n t  steady-state temperatures (23°C. 66°C. and 

121°C) and moisture cond i t ions  (Crv, 0.5 percent, 1.0 percent,  and 1.5 per-  

cen t ) .  The analys is  was c a r r i e d  ou t  f o r  a t o t a l  exposure du ra t i on  of about 

20 years.  

Resul ts shoved t h a t  the clampup fo rce  re laxes even a t  the room- 

temperature-dry condi ".ion. The re1 a x a t i  ons were about 8 percent, 13 percent, 

20 percent, and 30 percent f o r  exposure durat ions o f  1 day, 1 month, 1 year, 

and 20 ?cars, respec t i ve ly .  Resul ts f o r  h igh  temperatures and moistures 

showed, as expected, i l lcreased ra tes  o f  re laxa t ion .  The combined v i  scoel as t i c  

e f fects  o f  temperature and nloisture p red ic ted  by the  ana lys is  were a d d i t i v e .  

A simple a n a l y t i c a l  expression f o r  clanipup f o r ce  r e l a x a t i o n  was developed 

and f i t t e d  t o  room-temperature-dry f i n i  te-element r e s u l t s  using a least -square 

regression analys i s .  This equat ion was then general i r e d  t o  inc lude  temperature 

dnd nioisture v i scoe las t i c  e f f e c t s  by us ing n la ts r ia l  hygro themal  s h i f t  fac to rs .  

The c l  ampup re l axa t i on  equation was evaluated by compar'ng I t s  ca l cu la ted  

claniping forces w i t h  measured values. Tests were conducted w i t h  d i f f e r e n t  

steady-state ten~peratures and nmistures f o r  a 100-day dura t ion .  I n  general , 

the ca lcu la ted  and measured clampup forces were i n  good agreement. 
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TABLE 1 - -E las t i c  p roper t ies .  

Modulus, GPa Poisson's Ra t i o  

Ma te r i a l  1 €2 G1 2 12 2 3 

F iber  205.5 37.0 101.7 0.34 0.45 

~ e s i  na 4.1 4.1 1.54 .33 .33 

Lamina b 131 .oc 13.0' 6.4' . 34C .35 

Laminate 53.3 14.3 20.7 .28 .31 

Steel 206.8 206.8 79.54 .30 .30 

a ~ s o t r o p i c  ma te r i a l  (Ref. 7 ) .  

b ~ i b e r  volume i s  0.63. 

' ~ a t a  from Ref. 6. 



TABLE 2- -Vi  scoe las t ic  parameters o f  5208 r e s i n .  

Temperature, 
"C Moisture,  a~~ Do 

( O F )  M, % (Ref.  9) 
10 2 (10- m /N) ( ~ T H  )" 



(a) Plan vlew of specimen, 

6,35-mn (0,25-in) dla, steel bolt 

32-ply Gr/Ep lamlnate / 

/ Modeled reqlon 
/ (see ~ i g ,  2) 
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32-ply Gr/Ep laminate 

(b? Side vlew of specimen, 

Fig, 1, - Veclmen conf lgurct ion and dimensions, 
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Viscoelastic laminate elements 

(b )  Finite-element model, 

Fig, 2,- Joint ideal ization and f inite-element model, 
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