31 research outputs found

    Geochronology (Re–Os and U–Pb) and fluid inclusion studies of molybdenite mineralisation associated with the Shap, Skiddaw and Weardale granites, UK

    Get PDF
    Late Devonian magmatism in Northern England records key events associated with the Acadian phase of the Caledonian-Appalachian Orogen (C-AO). Zircon U-Pb and molybdenite Re-Os geochronology date emplacement and mineralisation in the Shap (405·2±1·8 Ma), Skiddaw (398·8±0·4 and 392·3±2·8 Ma) and Weardale granites (398·3±1·6 Ma). For the Shap granite, mineralisation and magmatism are contemporaneous, with mineralisation being directly associated with the boiling of CO2-rich magmatic fluids between 300 and 450°C, and 440 and 620 bars. For the Skiddaw granite, the Re-Os age suggests that sulphide mineralisation occurred post-magmatism (398·8±0·4 Ma) and was associated with the boiling (275 and 400°C and at 375-475 bars) of a non-magmatic fluid, enriched in N2, CH4 and S, which is isotopically heavy. In contrast, the co-magmatic molybdenite mineralisation of the Weardale granite formed from non-fluid boiling at 476 to 577°C at 1-1·7 kbars. The new accurate and precise ages indicate that magmatism and Mo-mineralisation occurred during the same period across eastern Avalonia (cf. Ireland). In addition, the ages provide a timing of tectonism of the Acadian phase of the C-AO in northern England. Based on the post-tectonic metamorphic mineral growth associated with the Shap and Skiddaw granite aureoles, Acadian deformation in the northern England continued episodically (before ∼405 Ma) throughout the Emsian (∼398 Ma)

    Dolomitization of the lower St. George Group on the Northern Peninsula in western Newfoundland: implications for lateral distribution of porosity

    Get PDF
    The Watts Bight Formation constitutes the lowermost part of the St. George Group in western Newfoundland. On the Northern Peninsula, it consists of Tremadocian (lower Ordovician) shallow marine platform carbonates (approximately 50 m thick). Dolomitization is extensive throughout the formation except for its topmost part. Petrographic examinations suggest that the succession was affected by at least three successive phases of dolomitization, which influenced secondary porosity. These phases have crystal-size ranges of approximately 4 to 50 μm (earliest sub- to euhedral dolomite D1), 50 to 200 μm (eu- to subhedral D2), and 300 μm to 3mm (anhedral saddle dolomite D3), respectively. They occur as replacement and/or pore-filling cements and exhibit dull (D1 and D3) to zoned (D2) luminescence under the cold cathodoluminoscope. The D2 phase is the dominant dolomite while the other two phases are rare. Microthermometric measurements of the primary two-phase fluid inclusions in D2 (homogenization temperatures up to 157o C and salinity estimates up to 24.3 eq. wt% NaCl) suggest that it formed under relatively deep burial conditions. This is supported by the petrographic character (eu- to subhedral relatively big crystals) and geochemical composition (depleted δ18O mean value of –8.7±1.2‰ VPDB and low Sr contents of 68±30ppm) of the D2 phase. Thin-section examination suggests that porosity is dominantly intercrystalline and associated with the D2 phase. Visual estimates suggest that porosity varies from <1% in most of the formation to approximately 10% in two horizons, each approximately 2m thick, at approximately 10 m and 20 m from formation base. Correlations with the equivalent Watts Bight Formation section in the Isthmus Bay (300 km to South) reveal porous intervals at comparable stratigraphic levels. Also the geochemical results and microthermometric measurements suggest that D2 in the Northern Peninsula section was formed from hotter fluids under relatively more reducing conditions relative to their Isthmus Bay counterparts. The porous zones seem to be associated with fluctuations in sea-level marked by negative shifts in the δ13C profile

    The role and temporal evolution of granite–related molybdenite mineral systems along the Caledonian-Appalachian orogen: Implications from Re-Os geochronology and fluid inclusion microthermometry.

    No full text
    Re–Os geochronometry is combined with fluid inclusion microthermometry to investigate the granite molybdenite system associated with the late-Caledonian Omey Granite, Connemara, western Ireland. Molybdenite in the Omey pluton is hosted by thin vertical quartz veins (<5 cm wide) that trend in a NE–SW direction. The 187Re and 187Os systematics yield a model age of 422˙5 ± 1˙7 Ma for the vein molybdenite. Three fluid inclusion types occur in the molybdenite bearing quartz veins: Type 1(aqueous-carbonic fluid), Type 2 (carbonic fluid) and Type 3 (aqueous fluid), Type 1 and Type 3 also occur in granite quartz. The Type 1 and 2 fluid inclusions are interpreted as representing the molybdenite mineralising fluid as is the case elsewhere in the Connemara granites. The 422˙5 ± 1˙7 Ma age for molybdenite mineralisation is the oldest reported from this region and implies that the Omey Granite was emplaced before the main Galway Batholith and during activity on the major orogen parallel lineaments like the Great Glen and Southern Uplands Faults

    Geology, mineralogy, S and Sr isotope geochemistry, and fluid inclusion analysis of barite associated with the Lemarchant Zn–Pb–Cu–Ag–Au-rich volcanogenic massive sulphide deposit, Newfoundland, Canada

    No full text
    Barite in the ~513 Ma Lemarchant VMS deposit, Newfoundland, consists of granular and bladed barite intimately associated with mineralization. Regardless of type, the barite is homogeneous at bulk rock and mineral scale containing predominantly Ba, S, Ca, with minor Sr and Na. The barite has homogeneous sulphur isotope compositions (δ34Smean = 27‰), similar to Cambrian seawater sulphate (25-35‰), and Sr isotope compositions (87Sr/86Sr = 0.70699 to 0.70751). These results are consistent with barite having formed from fluid-fluid mixing between Cambrian seawater and VMS-related hydrothermal fluids. The 87Sr/86Sr values in the barite are lower than mid-Cambrian seawater, which suggests that some of the Sr was derived from underlying Neoproterozoic basement. Fluid inclusions in bladed barite are low-salinity, CO2-rich inclusions with homogenization temperatures between 245°-250°C, and average salinity of 1.2 wt.% NaCl equivalent. Estimated minimum trapping pressures of between 1.7 to 2.0 kbars were calculated from aqueous-carbonic fluid inclusion assemblages. The fluid inclusion results reflect regional metamorphic reequilibration during younger Silurian regional metamorphism, rather than primary fluid signatures, despite the preservation of primary barite and fluid-inclusion textures. These results illustrate that barite in VMS deposits records the physicochemical processes associated with VMS formation and the sources of fluids in ancient VMS deposits, as well as seawater sulphate and basement isotopic compositions. The results herein are not only relevant for the Lemarchant deposit but other barite-rich VMS deposits, globally.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore