394 research outputs found
Coherent oscillations in a superconducting multi-level quantum system
We have observed coherent time evolution of states in a multi-level quantum
system, formed by a current-biased dc SQUID. The manipulation of the quantum
states is achieved by resonant microwave pulses of flux. The number of quantum
states participating in the coherent oscillations increases with increasing
microwave power. Quantum measurement is performed by a nanosecond flux pulse
which projects the final state onto one of two different voltage states of the
dc SQUID, which can be read out
Electric field sensing with a scanning fiber-coupled quantum dot
We demonstrate the application of a fiber-coupled quantum-dot-in-a-tip as a
probe for scanning electric field microscopy. We map the out-of-plane component
of the electric field induced by a pair of electrodes by measurement of the
quantum-confined Stark effect induced on a quantum dot spectral line. Our
results are in agreement with finite element simulations of the experiment.
Furthermore, we present results from analytic calculations and simulations
which are relevant to any electric field sensor embedded in a dielectric tip.
In particular, we highlight the impact of the tip geometry on both the
resolution and sensitivity.Comment: 10 pages, 4 figure
Decoherence processes in a current biased dc SQUID
A current bias dc SQUID behaves as an anharmonic quantum oscillator
controlled by a bias current and an applied magnetic flux. We consider here its
two level limit consisting of the two lower energy states | 0 \right> and |
1 \right>. We have measured energy relaxation times and microwave absorption
for different bias currents and fluxes in the low microwave power limit.
Decoherence times are extracted. The low frequency flux and current noise have
been measured independently by analyzing the probability of current switching
from the superconducting to the finite voltage state, as a function of applied
flux. The high frequency part of the current noise is derived from the
electromagnetic environment of the circuit. The decoherence of this quantum
circuit can be fully accounted by these current and flux noise sources.Comment: 4 pages, 4 figure
Harvesting, coupling and control of single exciton coherences in photonic waveguide antennas
We perform coherent non-linear spectroscopy of individual excitons strongly
confined in single InAs quantum dots (QDs). The retrieval of their
intrinsically weak four-wave mixing (FWM) response is enabled by a
one-dimensional dielectric waveguide antenna. Compared to a similar QD embedded
in bulk media, the FWM detection sensitivity is enhanced by up to four orders
of magnitude, over a broad operation bandwidth. Three-beam FWM is employed to
investigate coherence and population dynamics within individual QD transitions.
We retrieve their homogenous dephasing in a presence of spectral wandering.
Two-dimensional FWM reveals off-resonant F\"orster coupling between a pair of
distinct QDs embedded in the antenna. We also detect a higher order QD
non-linearity (six-wave mixing) and use it to coherently control the FWM
transient. Waveguide antennas enable to conceive multi-color coherent
manipulation schemes of individual emitters.Comment: 7 pages, 8 Figure
Observation of transition from escape dynamics to underdamped phase diffusion in a Josephson junction
We have investigated the dynamics of underdamped Josephson junctions. In
addition to the usual crossover between macroscopic quantum tunnelling and
thermally activated (TA) behaviour we observe in our samples with relatively
small Josephson coupling E_J, for the first time, the transition from TA
behaviour to underdamped phase diffusion. Above the crossover temperature the
threshold for switching into the finite voltage state becomes extremely sharp.
We propose a (T,E_J) phase-diagram with various regimes and show that for a
proper description of it dissipation and level quantization in a metastable
well are crucial.Comment: 4 pages, 3 figure
Nanosecond quantum state detection in a current biased dc SQUID
This article presents our procedure to measure the quantum state of a dc
SQUID within a few nanoseconds, using an adiabatic dc flux pulse. Detection of
the ground state is governed by standard macroscopic quantum theory (MQT), with
a small correction due to residual noise in the bias current. In the two level
limit, where the SQUID constitutes a phase qubit, an observed contrast of 0.54
indicates a significant loss in contrast compared to the MQT prediction. It is
attributed to spurious depolarization (loss of excited state occupancy) during
the leading edge of the adiabatic flux measurement pulse. We give a simple
phenomenological relaxation model which is able to predict the observed
contrast of multilevel Rabi oscillations for various microwave amplitudes.Comment: 10 pages, 8 figure
Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses
We propose to probe the distribution of current fluctuations by means of the
escape probability histogram of a Josephson junction (JJ), obtained using very
short bias current pulses in the adiabatic regime, where the low-frequency
component of the current fluctuations plays a crucial role. We analyze the
effect of the third cumulant on the histogram in the small skewness limit, and
address two concrete examples assuming realistic parameters for the JJ. In the
first one we study the effects due to fluctuations produced by a tunnel
junction, finding that the signature of higher cumulants can be detected by
taking the derivative of the escape probability with respect to current. In
such a realistic situation, though, the determination of the whole distribution
of current fluctuations requires an amplification of the cumulants. As a second
example we consider magnetic flux fluctuations acting on a SQUID produced by a
random telegraph source of noise.Comment: 6 pages, 6 figures; final versio
Rabi-like oscillations of an anharmonic oscillator: classical versus quantum interpretation
8 pagesInternational audienceWe have observed Rabi-like oscillations in a current-biased dc SQUID presenting enhanced coherence times compared to our previous realization~\cite{Claudon_PRL04}. This Josephson device behaves as an anharmonic oscillator which can be driven into a coherent superposition of quantum states by resonant microwave flux pulses. Increasing the microwave amplitude, we study the evolution of the Rabi frequency from the 2-level regime to the regime of multilevel dynamics. When up to levels are involved, the Rabi frequency is a clear signature of quantum behavior. At higher excitation amplitude, classical and quantum predictions for the Rabi frequency converge. This result is discussed in the light of a calculation of the Wigner function. In particular, our analysis shows that pronounced quantum interferences always appear in the course of the Rabi-like oscillations
Identifying the role of the local density of optical states in frequency conversion of light in confined media
We have reversibly switched the resonance of a GaAs-AlAs microcavity in the near-infrared near λ=1300 nm within 300 fs by the electronic Kerr effect. We reveal by pump-probe spectroscopy a remarkable red shift or blue shift of the light confined inside the cavity for small pulse delays, depending on their temporal ordering. The color-converted light is efficiently generated in a broad frequency continuum that differs markedly from the instantaneous cavity resonance in terms of the central frequency and bandwidth. From observations on cavities with different quality factors, we identify the role of the local density of optical states (LDOS) available to the newly generated light frequencies. In particular, we distinguish the effect of the LDOS related to the cavity resonance itself, and the LDOS continuum that leaks in from the vacuum surrounding the cavity. Our new insights provide a unified picture for seemingly disparate results in traditional and nanophotonic nonlinear optics
Evidence of two-dimensional macroscopic quantum tunneling of a current-biased DC-SQUID
The escape probability out of the superconducting state of a hysteretic
DC-SQUID has been measured at different values of the applied magnetic flux. At
low temperature, the escape current and the width of the probability
distribution are temperature independent but they depend on flux. Experimental
results do not fit the usual one-dimensional (1D) Macroscopic Quantum Tunneling
(MQT) law but are perfectly accounted for by the two-dimensional (2D) MQT
behaviour as we propose here. Near zero flux, our data confirms the recent MQT
observation in a DC-SQUID \cite{Li02}.Comment: 4 pages, 4 figures Accepted to PR
- …