21 research outputs found

    Simulated Response of St. Joseph Bay, Florida, Seagrass Meadows and Their Belowground Carbon to Anthropogenic and Climate Impacts

    Get PDF
    Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020. Model predictions were compared with satellite-derived measurements of seagrass extent and shoot density from the Landsat images for the same period. The GrassLight-derived area of potential seagrass habitat ranged from 36.2 km2 to 39.2 km2, averaging 38.0 ± 0.8 km2 compared to an observed seagrass extent of 23.0 ± 3.0 km2 derived from Landsat (range = 17.9–27.4 km2). GrassLight predicted a mean seagrass LAI of 2.7 m2 leaf m−2 seabed, compared to a mean LAI of 1.9 m2 m−2 estimated from Landsat, indicating that seagrass density in St. Joseph Bay may have been below its light-limited ecological potential. Climate and anthropogenic change simulations using GrassLight predicted the impact of changes in temperature, pH, chlorophyll a, chromophoric dissolved organic matter and turbidity on seagrass meadows. Simulations predicted a 2–8% decline in seagrass extent with rising temperatures that was offset by a 3–11% expansion in seagrass extent in response to ocean acidification when compared to present conditions. Simulations of water quality impacts showed that a doubling of turbidity would reduce seagrass extent by 18% and total leaf area by 21%. Combining climate and water quality scenarios showed that ocean acidification may increase seagrass productivity to offset the negative effects of both thermal stress and declining water quality on the seagrasses growing in St. Joseph Bay. This research highlights the importance of considering multiple limiting factors in understanding the effects of environmental change on seagrass ecosystems

    Evaluation of Geostationary Lightning Mapper (GLM) Navigation Performance with the INR Performance Assessment Toolset (IPATS)

    Get PDF
    The GOES-R flight project has developed the Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) to perform independent INR evaluations of the optical instruments on the GOES-R series spacecraft. In this presentation, we document the development of navigation (NAV) evaluation capabilities within IPATS for the Geostationary Lightning Mapper (GLM). We also discuss the post-processing quality filtering developed for GLM NAV, and present example results for several GLM background image datasets. Initial results suggest that GOES-16 GLM is compliant with navigation requirements

    Lymphocyte Modulation with FTY720 Improves Hemorrhagic Shock Survival in Swine

    Get PDF
    The inflammatory response to severe traumatic injury results in significant morbidity and mortality. Lymphocytes have recently been identified as critical mediators of the early innate immune response to ischemia-reperfusion injury. Experimental manipulation of lymphocytes following hemorrhagic shock may prevent secondary immunologic injury in surgical and trauma patients. The objective of this study is to evaluate the lymphocyte sequestration agent FTY720 as an immunomodulator following experimental hemorrhagic shock in a swine liver injury model. Yorkshire swine were anesthetized and underwent a grade III liver injury with uncontrolled hemorrhage to induce hemorrhagic shock. Experimental groups were treated with a lymphocyte sequestration agent, FTY720, (n = 9) and compared to a vehicle control group (n = 9). Animals were observed over a 3 day survival period after hemorrhage. Circulating total leukocyte and neutrophil counts were measured. Central lymphocytes were evaluated with mesenteric lymph node and spleen immunohistochemistry (IHC) staining for CD3. Lung tissue infiltrating neutrophils were analyzed with myeloperoxidase (MPO) IHC staining. Relevant immune-related gene expression from liver tissue was quantified using RT-PCR. The overall survival was 22.2% in the vehicle control and 66.7% in the FTY720 groups (p = 0.081), and reperfusion survival (period after hemorrhage) was 25% in the vehicle control and 75% in the FTY720 groups (p = 0.047). CD3+ lymphocytes were significantly increased in mesenteric lymph nodes and spleen in the FTY720 group compared to vehicle control, indicating central lymphocyte sequestration. Lymphocyte disruption significantly decreased circulating and lung tissue infiltrating neutrophils, and decreased expression of liver immune-related gene expression in the FTY720 treated group. There were no observed infectious or wound healing complications. Lymphocyte sequestration with FTY720 improves survival in experimental hemorrhagic shock using a porcine liver injury model. These results support a novel and clinically relevant lymphocyte immunomodulation strategy to ameliorate secondary immune injury in hemorrhagic shock

    Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

    Get PDF
    AbstractThe identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.</jats:p

    Effect of aging on myocardial adenosine production, adenosine uptake and adenosine kinase activity in rats

    No full text
    Adenosine levels present in the interstitial fluid and coronary effluent of the aged heart exceed those of the young adult heart. The present study investigated mechanisms in the Fischer 344 rat heart which may be responsible for the observed differences. (1) Total production of adenosine was determined in isolated perfused hearts by measuring coronary effluent adenosine content while inhibiting adenosine deamination and rephosphorylation with erythrohydroxy-nonyladenosine (EHNA) and iodotubercidin (ITC), respectively. Total adenosine production was similar in both young (3-4 month) and aged (20-21 month) hearts at 31.8 +/- 6.6 and 38.4 +/- 3.3 nmol/min/g dry wt, respectively. However, stimulation with the beta-adrenergic agent, isoproterenol, elicited a significantly greater increase in adenosine production in the young vs. aged heart. (2) Adenosine transport was evaluated in isolated perfused hearts by determining 14C uptake by the myocardium after 20 min of 14C-adenosine perfusion. Adenosine uptake in the agent-free heart was found to be decreased 17 to 25% in aged compared to young adult hearts. (3) Adenosine transport characteristics were determined with nitrobenzylthioinosine saturation-binding studies in ventricular membrane preparations. The Bmax values were significantly lower in aged than young adult hearts (140.2 +/- 1.5 fmol/mg and 191.9 +/- 2.3 fmol/mg in aged and young hearts, respectively) indicating a decreased number of transporter sites in the aged heart. However, the values for Kd were decreased with aging, suggesting an increase in the affinity of the transporter for adenosine in the aged vs. young adult heart. (4) The activities and kinetics of adenosine kinase were determined in homogenates of aged and young adult ventricular myocardium. No statistical difference was found between the two activities. Taken together these results suggest that increased interstitial adenosine levels in the aged heart result from decreased uptake of adenosine by the ventricular myocardium

    Central lymphocyte counts at time of necropsy.

    No full text
    <p><b>a</b>) Representative immunohistochemistry pictures (20× magnification) of anti-CD3 staining of normal, control, and FTY720 mesenteric lymph node and spleen tissue. <b>b</b>) Quantification of anti-CD3 reactivity by ACIS. * indicates p<0.05 compared to normal, unmanipulated tissue; † indicates p<0.05 compared to control. Data is depicted as mean ± SEM.</p

    Peripheral leukocyte counts during hemorrhage and reperfusion periods.

    No full text
    <p>Dashed line indicates end of hemorrhage and beginning of reperfusion period. Leukocytes were significantly decreased during the reperfusion period in the FTY720 group (p = 0.03). Data is depicted as mean ± SEM.</p
    corecore