268 research outputs found

    Preliminary Investigation into Modeling The Damage to Carbon Fibre Composites Due to the Thermo-electric Effects of a Lightning Strikes

    No full text
    The impact of a lightning strike causes a short high electrical current burst through Carbon Fibre Composites (CFC). Due to the electrical properties of CFC the large current leads to a rapid heating of the surrounding impact area which degrades and damages the CFC. It is therefore necessary to study in detail the thermal response and possible degradation processes caused to CFC. The degradation takes place in two ways, firstly via direct mechanical fracture due to the thermal expansion of the CFC and secondly via thermo-chemical processes (phase change and pyrolysis) at high temperatures. The main objective of this work is to construct a numerical model of the major physical processes involved, and to understand the correlation between the damage mechanisms and the damage witnessed in modern CFC. For this work we are only considering the thermo-chemical degradation of CFC. Bespoke numerical models have been constructed to predict the extent of the damage caused by the two thermo-chemical processes separately (e.g. a model for phase change and a model for pyrolysis). The numerical model predictions have then been verified experimental by decoupling of the damage mechanisms, e.g. the real Joule heating from a lightning strike is replaced by a high power laser beam acting on composite surface. This was done to simplify the physical processes which occur when a sample is damaged. The experimentally damaged samples were then investigated using X-ray tomography to determine the physical extent of the damage. The experimental results are then compared with the numerical predictions by considering the physical extent of the polymer removal. The extent of polymer removal predicted by the numerical model, solving for pyrolysis, gave a reasonable agreement with the damage seen in the experimental sample. Furthermore the numerical model predicts that the damage caused by polymer phase change has a minimal contribution to the overall extent of the damage

    Measured Sensitivity of the First Mark II Phased Array Feed on an ASKAP Antenna

    Full text link
    This paper presents the measured sensitivity of CSIRO's first Mk. II phased array feed (PAF) on an ASKAP antenna. The Mk. II achieves a minimum system-temperature-over-efficiency Tsys/ηT_\mathrm{sys}/\eta of 78 K at 1.23 GHz and is 95 K or better from 835 MHz to 1.8 GHz. This PAF was designed for the Australian SKA Pathfinder telescope to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array (SKA).Comment: 5 pages, 2 figures, accepted for publication in Electromagnetics in Advanced applications (ICEAA), 2015 International Conference o

    High-velocity OH megamasers in IRAS 20100-4156: Evidence for a Supermassive Black Hole

    Full text link
    We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)'s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at −-409 and −-562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100−-4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAP's BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.Comment: Accepted to MNRAS. Seven pages, three figure

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky−1^{-1}\,day−1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of −1.5-1.5, the rate is 10.7−1.8+2.7 (sys) ± 3 (stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 57±6 (sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of −2.1-2.1, it is 16.6−1.5+1.9 (sys) ±4.7 (stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 41.6±1.5 (sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    Cold gas outflows from the Small Magellanic Cloud traced with ASKAP

    Full text link
    Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous galaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, T<400 KT<400~{\rm K}, and may have formed during a period of active star formation 25−6025 - 60 million years (Myr) ago. The total mass of atomic gas in the outflow is ∼107\sim 10^7 solar masses, M⊙{\rm M_{\odot}}, or ∼3\sim 3% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, M˙HI∼0.2−1.0 M⊙ yr−1\dot{M}_{HI}\sim 0.2 - 1.0~{\rm M_{\odot}~yr^{-1}}, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way.Comment: Published in Nature Astronomy, 29 October 2018, http://dx.doi.org/10.1038/s41550-018-0608-

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s−1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 40∘40^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of ∼1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM∼0.81−0.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    Field sources near the southern-sky calibrator PKS B1934-638: effect on spectral line observations with SKA-MID and its precursors

    Full text link
    Accurate instrumental bandpass corrections are essential for the reliable interpretation of spectral lines from targeted and survey-mode observations with radio interferometers. Bandpass correction is typically performed by comparing measurements of a strong calibrator source to an assumed model, typically an isolated point source. The wide field-of-view and high sensitivity of modern interferometers means that additional sources are often detected in observations of calibrators. This can introduce errors into bandpass corrections and subsequently the target data if not properly accounted for. Focusing on the standard calibrator PKS B1934-638, we perform simulations to asses this effect by constructing a wide-field sky model. The cases of ASKAP (0.7-1.9 GHz), MeerKAT (UHF: 0.58-1.05 GHz; L-band: 0.87-1.67 GHz) and Band 2 (0.95-1.76 GHz) of SKA-MID are examined. The use of a central point source model during bandpass calibration is found to impart amplitude errors into spectra measured by the precursor instruments at the ~0.2-0.5% level dropping to ~0.01% in the case of SKA-MID. This manifests itself as ripples in the source spectrum, the behaviour of which is coupled to the distribution of the array baselines, the solution interval, the primary beam size, the hour-angle of the calibration scan, as well as the weights used when imaging the target. Calibration pipelines should routinely employ complete field models for standard calibrators to remove this potentially destructive contaminant from the data, a recommendation we validate by comparing our simulation results to a MeerKAT scan of PKS B1934-638, calibrated with and without our expanded sky model.Comment: 11 pages, 10 figures, accepted for publication in MNRA
    • …
    corecore