553 research outputs found

    A probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra

    Full text link
    Autonomous synthesis and characterization of inorganic materials requires the automatic and accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep learning algorithm to identify complex multi-phase mixtures. At the core of this algorithm lies an ensemble convolutional neural network trained on simulated diffraction spectra, which are systematically augmented with physics-informed perturbations to account for artifacts that can arise during experimental sample preparation and synthesis. Larger perturbations associated with off-stoichiometry are also captured by supplementing the training set with hypothetical solid solutions. Spectra containing mixtures of materials are analyzed with a newly developed branching algorithm that utilizes the probabilistic nature of the neural network to explore suspected mixtures and identify the set of phases that maximize confidence in the prediction. Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods based on profile matching and deep learning. We envision that the algorithm presented here may be integrated in experimental workflows to facilitate the high-throughput and autonomous discovery of inorganic materials

    Autonomous decision making for solid-state synthesis of inorganic materials

    Full text link
    To aid in the automation of inorganic materials synthesis, we introduce an algorithm (ARROWS3) that guides the selection of precursors used in solid-state reactions. Given a target phase, ARROWS3 iteratively proposes experiments and learns from their outcomes to identify an optimal set of precursors that leads to maximal yield of that target. Initial experiments are selected based on thermochemical data collected from first principles calculations, which enable the identification of precursors exhibiting large thermodynamic force to form the desired target. Should the initial experiments fail, their associated reaction paths are determined by sampling a range of synthesis temperatures and identifying their products. ARROWS3 then uses this information to pinpoint which intermediate reactions consume most of the available free energy associated with the starting materials. In subsequent experimental iterations, precursors are selected to avoid such unfavorable reactions and therefore maintain a strong driving force to form the target. We validate this approach on three experimental datasets containing results from more than 200 distinct synthesis procedures. When compared to several black-box optimization algorithms, ARROWS3 identifies the most effective set of precursors for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of using domain knowledge in the design of optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    S=1/2 chains and spin-Peierls transition in TiOCl

    Full text link
    We study TiOCl as an example of an S=1/2 layered Mott insulator. From our analysis of new susceptibility data, combined with LDA and LDA+U band structure calculations, we conclude that orbital ordering produces quasi-one-dimensional spin chains and that TiOCl is a new example of Heisenberg-chains which undergo a spin-Peierls transition. The energy scale is an order of magnitude larger than that of previously known examples. The effects of non-magnetic Sc impurities are explained using a model of broken finite chains.Comment: 5 pages, 5 figures (color); details on crystal growth added; to be published in Phys. Rev.

    The Collins-Roscoe mechanism and D-spaces

    Full text link
    We prove that if a space X is well ordered (αA)(\alpha A), or linearly semi-stratifiable, or elastic then X is a D-space

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table
    • …
    corecore