105 research outputs found

    Qualification of Sub-atmospheric Pressure Sensors for the Cryomagnet Bayonet Heat Exchangers of the Large Hadron Collider

    Get PDF
    The superconducting magnets of the Large Hadron Collider (LHC) will be cooled at 1.9 K by distributed cooling loops working with saturated two-phase superfluid helium flowing in 107 m long bayonet heat exchangers [1] located in each magnet cold-mass cell. The temperature of the magnets could be difficult to control because of the large dynamic heat load variations. Therefore, it is foreseen to measure the heat exchangers pressure to feed the regulation loops with the corresponding saturation temperature. The required uncertainty of the sub-atmospheric saturation pressure measurement shall be of the same order of the one associated to the magnet thermometers, in pressure it translates as ±5 Pa at 1.6 kPa. The transducers shall be radiation hard as they will endure, in the worst case, doses up to 10 kGy and 10**15 neutrons·cm**-2 over 10 years. The sensors under evaluation were installed underground in the dump section of the SPS accelerator with a radiation environment close to the one expected for the LHC. The monitoring equipment was installed in a remote radiation protected area. This paper presents the results of the radiation qualification campaign with emphasis on the reliability and accuracy of the pressure sensors under the test conditions

    Cryogenic Pressure Calibration Facility Using a Cold Force Reference

    Get PDF
    Presently various commercial cryogenic pressure sensors are being investigated for installation in the LHC collider, they will eventually be used to assess that the magnets are fully immersed in liquid and to monitor fast pressure transients. In the framework of this selection procedure a cryogenic pressue calibration facility has been designed and built; it is based on a cryogenic primary pressure reference made of a bellows that converts the pressure into a force measurement. For that a shaft transfers this force to a precision force transducer at room temperature. Knowing the liquid bath pessure and the surface area of the bellows the pressure applied to the transducers under calibration is calculated; corrections due to thermal contraction are introduced. To avoid loss of force in the bellows wall its length is maintained constant; a cold capacitive displacement sensor measures this. The calibration temperature covers 1.5 K to 4.2 K and the pressure 0 to 20 bar. In contrast with more classical techniques that refer to a pressure reference at room temperature, the method presented in this paper avoid errors due to the uncertainty on the hydrostatic head calculation, to thermoacoustic oscillations and to pressure variation caused by temperature drift along the sensing capillary

    Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    Full text link
    The low-beta magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10**34/cm**2s. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-beta magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.Comment: 6 pp. ICEC 23 - ICMC 2010 International Cryogenic Engineering Conference 23 - International Cryogenic Materials Conference 2010. 19-23 Jul 2010. Wroclaw, Polan

    Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    Get PDF
    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>1015^15 n/cm2^2) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to the neutron radiation (i.e. Argon gas bulbs when working at about 84 K, and below 4.5 K, either helium gas bulbs or the saturation pressure of the superfluid helium bath). The resistance shifts of the different sensors at liquid helium temperatures are presented

    Neutron Irradiation Tests in Superfluid Helium of LHC Cryogenic Thermometers

    Get PDF
    For control and monitoring purposes, about 10,000 individually calibrated cryogenic temperature sensors will be installed along the 26.7 km LHC. In order to reduce maintenance constraints these sensor s should be as immune as possible to the high neutron fluence environment. For selecting the sensor to be used, a radiation hardness evaluation program at cryogenic conditions is being performed in an irradiation vault of the ISN SARA Cyclotron (Grenoble, France). The set-up is capable of simulating the whole life of a LHC thermometer: same total neutron dose (1015 n.cm-2), irradiation at low tempe rature (1.8 K) and thermal cycles. Bath temperature and sensor resistance are monitored on-line. This paper presents the latest results of this program

    Tools for Quality Testing of Batches of Artifacts: The Cryogenic Thermometers for the LHC

    Get PDF
    In the processing of data series, such as in the case of the resistance R vs. temperature T calibrations of the thermometers (several thousands) necessary for the LHC new accelerator at CERN, it is necessary to use automatic methods for determining the quality of the acquired data and the degree of uniformity of the thermometer characteristics, that are of the semiconducting type. In addition, it must be determined if the calibration uncertainties comply with the specifications in the wide temperature range 1,6 - 300 K. Advantage has been taken of the fact that these thermometers represent a population with limited variability, to apply a Least Squares Method with Fixed Effect. This allows to fit the data of all the thermometers together, by taking into account the individuality of each thermometer in the model as a deviation from one of them taken as reference Ri = f(Ti) + bk0 + bk1 g(Tki) + bk1g(Tki)2 + ... where f(Ti) is the model valid for all i data and all k thermometers, while the subsequent part is the "fixed effect" model for the k-th thermometer, where g(T) is a suitable function of T. This method is shown in the paper applied to different stages of the data processing. First, for efficient compensation for the thermal drift occurring during acquisition, robust against the occurrence of outliers. Second, for detection of clusters of thermometers with inherently different characteristics. Finally, for optimisation of the calibration-point distribution

    Calibration of Cryogenic Thermometers for the LHC

    Get PDF
    6000 cryogenic temperature sensors of resistive type covering the range from room temperature down to 1.6 K are installed on the LHC machine. In order to meet the stringent requirements on temperature control of the superconducting magnets, each single sensor needs to be calibrated individually. In the framework of a special contribution, IPN (Institut de Physique Nucléaire) in Orsay, France built and operated a calibration facility with a throughput of 80 thermometers per week. After reception from the manufacturer, the thermometer is first assembled onto a support specific to the measurement environment, and then thermally cycled ten times and calibrated at least once from 1.6 to 300 K. The procedure for each of these interventions includes various measurements and the acquired data is recorded in an ORACLE®-database. Furthermore random calibrations on some samples are executed at CERN to crosscheck the coherence between the approximation data obtained by both IPN and CERN. In the range of 1.5 K to 30 K, the calibration apparatuses at IPN and CERN are traceable to standards maintained in a national metrological laboratory by using a set of rhodium-iron temperature sensors of metrological quality. This paper presents the calibration procedure, the quality assurance applied, the results of the calibration campaigns and the return of experience

    Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop

    Get PDF
    The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an appropriate cost function to determine the manipulated variable. One of the main characteristics of the MBPC is that it can easily incorporate process constraints; therefore the regulation band amplitude can be substantially reduced and optimally placed. An MBPC controller has completed a run where performance and robustness has been compared against a standard PI controller (Proportional and Integral)

    Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    Get PDF
    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field

    Operation, Testing and Long Term Behaviour of the LHC Test String Cryogenic System

    Get PDF
    Since the end of 1994 we have been operating a prototype half-cell of the machine lattice, accumulating more than 10,000 hours at superfluid helium temperatures and recovering from 150, mainly provoke d, magnet resistive transitions. The system has confirmed the validity of the basic design choices of the LHC cryogenic system. Furthermore, extensive testing on the response of the system to current ramp and discharge, and to magnet resistive transition, has provided sufficient information to enable a simplification of the cryogenic scheme that fulfils the LHC requirements. We report on the cryog enic operation, testing and long-term behaviour of the LHC Test String during the last 4 years of operation
    • …
    corecore