359 research outputs found

    The Price of Anarchy in Transportation Networks: Efficiency and Optimality Control

    Full text link
    Uncoordinated individuals in human society pursuing their personally optimal strategies do not always achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly waste a considerable amount of their travel time. Counterintuitively,simply blocking certain streets can partially improve the traffic conditions. We analyze various complex networks and discuss the possibility of similar paradoxes in physics.Comment: major revisions with multicommodity; Phys. Rev. Lett., accepte

    Classical simulation of measurement-based quantum computation on higher-genus surface-code states

    Full text link
    We consider the efficiency of classically simulating measurement-based quantum computation on surface-code states. We devise a method for calculating the elements of the probability distribution for the classical output of the quantum computation. The operational cost of this method is polynomial in the size of the surface-code state, but in the worst case scales as 22g2^{2g} in the genus gg of the surface embedding the code. However, there are states in the code space for which the simulation becomes efficient. In general, the simulation cost is exponential in the entanglement contained in a certain effective state, capturing the encoded state, the encoding and the local post-measurement states. The same efficiencies hold, with additional assumptions on the temporal order of measurements and on the tessellations of the code surfaces, for the harder task of sampling from the distribution of the computational output.Comment: 21 pages, 13 figure

    Quantum Optimization Problems

    Full text link
    Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for an NP optimization problem that searches an optimal value among exponentially-many outcomes of polynomial-time computations. This paper expands his framework to a quantum optimization problem using polynomial-time quantum computations and introduces the notion of an ``universal'' quantum optimization problem similar to a classical ``complete'' optimization problem. We exhibit a canonical quantum optimization problem that is universal for the class of polynomial-time quantum optimization problems. We show in a certain relativized world that all quantum optimization problems cannot be approximated closely by quantum polynomial-time computations. We also study the complexity of quantum optimization problems in connection to well-known complexity classes.Comment: date change

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals

    Adiabatic quantum algorithm for search engine ranking

    Full text link
    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of webpages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top ranked log(n)\log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speedup. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.Comment: 7 pages, 5 figures; closer to published versio

    Computational Complexity of Determining the Barriers to Interface Motion in Random Systems

    Get PDF
    The low-temperature driven or thermally activated motion of several condensed matter systems is often modeled by the dynamics of interfaces (co-dimension-1 elastic manifolds) subject to a random potential. Two characteristic quantitative features of the energy landscape of such a many-degree-of-freedom system are the ground-state energy and the magnitude of the energy barriers between given configurations. While the numerical determination of the former can be accomplished in time polynomial in the system size, it is shown here that the problem of determining the latter quantity is NP-complete. Exact computation of barriers is therefore (almost certainly) much more difficult than determining the exact ground states of interfaces.Comment: 8 pages, figures included, to appear in Phys. Rev.

    Order-Revealing Encryption and the Hardness of Private Learning

    Get PDF
    An order-revealing encryption scheme gives a public procedure by which two ciphertexts can be compared to reveal the ordering of their underlying plaintexts. We show how to use order-revealing encryption to separate computationally efficient PAC learning from efficient (ϵ,δ)(\epsilon, \delta)-differentially private PAC learning. That is, we construct a concept class that is efficiently PAC learnable, but for which every efficient learner fails to be differentially private. This answers a question of Kasiviswanathan et al. (FOCS '08, SIAM J. Comput. '11). To prove our result, we give a generic transformation from an order-revealing encryption scheme into one with strongly correct comparison, which enables the consistent comparison of ciphertexts that are not obtained as the valid encryption of any message. We believe this construction may be of independent interest.Comment: 28 page

    Learning Ordinal Preferences on Multiattribute Domains: the Case of CP-nets

    Get PDF
    International audienceA recurrent issue in decision making is to extract a preference structure by observing the user's behavior in different situations. In this paper, we investigate the problem of learning ordinal preference orderings over discrete multi-attribute, or combinatorial, domains. Specifically, we focus on the learnability issue of conditional preference networks, or CP- nets, that have recently emerged as a popular graphical language for representing ordinal preferences in a concise and intuitive manner. This paper provides results in both passive and active learning. In the passive setting, the learner aims at finding a CP-net compatible with a supplied set of examples, while in the active setting the learner searches for the cheapest interaction policy with the user for acquiring the target CP-net

    Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions

    Full text link
    The thermodynamics of a disordered planar vortex array is studied numerically using a new polynomial algorithm which circumvents slow glassy dynamics. Close to the glass transition, the anomalous vortex displacement is found to agree well with the prediction of the renormalization-group theory. Interesting behaviors such as the universal statistics of magnetic susceptibility variations are observed in both the dense and dilute regimes of this mesoscopic vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be sent to [email protected]

    Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation

    Full text link
    Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga2_2Se, GaSe and Ga2_2Se3_3, and of the GaSe and Ga2_2Se3_3 crystals. The calculated equilibrium structure of GaSe crystal agrees well with available experimental data. The neutron-weighted liquid structure factors calculated from the simulations are in reasonable agreement with recent neutron diffraction measurements. Simulation results for the partial radial distribution functions show that the liquid structure is closely related to that of the crystals. A close similarity between solid and liquid is also found for the electronic density of states and charge density. The calculated electronic conductivity decreases strongly with increasing Se content, in accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to Phys. Rev. B. corresponding author: [email protected]
    corecore