1,136 research outputs found

    Evolution of a beam dynamics model for the transport lines in a proton therapy facility

    Full text link
    Despite the fact that the first-order beam dynamics models allow an approximated evaluation of the beam properties, their contribution is essential during the conceptual design of an accelerator or beamline. However, during the commissioning some of their limitations appear in the comparison against measurements. The extension of the linear model to higher order effects is, therefore, demanded. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the performance of the facility, a more precise model was required and has been developed with the multi-particle open source beam dynamics code called OPAL (Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g. degrader, collimators, scattering foils and air gaps) on the beam emittance and energy spread can be analysed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the OPAL model has been confirmed by numerous measurements.Comment: 17 pages, 19 figure

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields

    Full text link
    Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p core excitations has been measured at the Heidelberg heavy ion storage ring TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n (2p_j nl)-Rydberg resonances. This result confirms our previous finding for isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that experimentally established the sensitivity of DR to ExB fields. In the present investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+ allowed us to study separately the influence of external fields via the two series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s -> 2p_{3/2} excitations of the Li-like core, extracting initial slopes and saturation fields of the enhancement. We find that for Ey > 80 V/cm the field induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see also http://www.strz.uni-giessen.de/~k

    Single-photon single ionization of W+^{+} ions: experiment and theory

    Full text link
    Experimental and theoretical results are reported for photoionization of Ta-like (W+^{+}) tungsten ions. Absolute cross sections were measured in the energy range 16 to 245 eV employing the photon-ion merged-beam setup at the Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16 to 108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s  6DJ5s^2 5p^6 5d^4({^5}D)6s \; {^6}{\rm D}_{J}, JJ=1/2, ground level and the associated excited metastable levels with JJ=3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, JJ=5/2, and for the 4^4F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with JJ = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+^+ the calculations reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B: At. Mol. & Opt. Phy

    Large interfacial spin-orbit torques in layered antiferromagnetic insulator NiPS3/ferromagnet bilayers

    Get PDF
    Finding efficient ways of manipulating magnetic bits is one of the core goals in spintronic research. Electrically-generated spin-orbit torques (SOTs) are good candidates for this and the search for materials capable of generating highly-efficient SOTs has gained a lot of traction in the recent years. While antiferromagnet/ferromagnet bilayer structures have been employed extensively for passive applications, e.g. by using exchange bias fields, their active properties are not yet widely employed. Here we show the presence of large interfacial SOTs in bilayer of a ferromagnet and the two-dimensional layered antiferromagnetic insulator NiPS3_3. We observe a large in-plane damping-like interfacial torque, showing a torque conductivity of σDL1×105(2e)/(Ωm)\sigma_\mathrm{DL} \approx 1 \times 10^{5} \mathrm{(\frac{\hbar}{2e}) /(\Omega m)} even at room temperature, comparable to the best devices reported in the literature for standard heavy-metal-based and topological insulators-based devices. Additionally, our devices also show an out-of-plane field-like torque arising from the NiPS3_3/ferromagnet interface, further indicating the presence of an interfacial spin-orbit coupling in our structures. Temperature-dependent measurements reveal an increase of the SOTs with a decreasing temperature below the N\'eel temperature of NiPS3_3 (TN170KT_N \approx 170 \mathrm{K}), pointing to a possible effect of the magnetic ordering on our measured SOTs. Our findings show the potential of antiferromagnetic insulators and two-dimensional materials for future spintronic applications.Comment: 19 pages, 3 figures, 1 table. Changed units of the torque normalized by the electric field from μmT/V\mathrm{\mu m \, T/V} to $\mathrm{nm \, T/V}

    K-shell photoionization of ground-state Li-like carbon ions [C3+^{3+}]: experiment, theory and comparison with time-reversed photorecombination

    Full text link
    Absolute cross sections for the K-shell photoionization of ground-state Li-like carbon [C3+^{3+}(1s2^22s 2^2S)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source. The energy ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the [1s(2s2p)3^3P]2^2P, [1s(2s2p)1^1P]2^2P and [(1s2s)3^3S 3p]2^2P resonances, respectively, were investigated using resolving powers of up to 6000. The autoionization linewidth of the [1s(2s2p)1^1P]2^2P resonance was measured to be 27±527 \pm 5 meV and compares favourably with a theoretical result of 26 meV obtained from the intermediate coupling R-Matrix method. The present photoionization cross section results are compared with the outcome from photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table
    corecore