18,931 research outputs found

    Optimization of an Electromagnetic Energy Harvesting Device

    No full text
    This paper presents the modeling and optimization of an electromagnetic-based generator for generating power from ambient vibrations. Basic equations describing such generators are presented and the conditions for maximum power generation are described. Two-centimeter scale prototype generators, which consist of magnets suspended on a beam vibrating relative to a coil, have been built and tested. The measured power and modeled results are compared. It is shown that the experimental results confirm the optimization theory

    Spin polarized STM spectra of Dirac Fermions on the surface of a topological insulator

    Full text link
    We provide a theory for the tunneling conductance G(V)G(V) of Dirac Fermions on the surface of a topological insulator as measured by a spin-polarized scanning tunneling microscope tip for low bias voltages VV. We show that G(V)G(V) exhibits an unconventional dependence on the direction of magnetization of the tip and can be used to measure the magnitude of the local out-of-plane spin orientation of the Dirac Fermions on the surface. We also demonstrate that if the in-plane rotational symmetry on the surface of the topological insulator is broken by an external field, then G(V)G(V) acquires a dependence on the azimuthal angle of the magnetization of the tip. We explain the role of the Dirac Fermions in this unconventional behavior and suggest experiments to test our theory.Comment: 7 pages, 5 Fig

    On the Natural Convection Boundary Layer Adjacent to an Inclined Flat Plate Subject to Ramp Heating

    Get PDF
    An investigation of the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a temperature boundary condition which follows a ramp function up until some specified time and then remains constant is reported. The development of the flow from start-up to a steadystate has been described based on scaling analyses and verified by numerical simulations. Attention in this study has been given to fluids having a Prandtl number Pr less than unity. The boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating

    Probability for Primordial Black Holes in Higher Derivative Theories

    Get PDF
    The probability for quantum creation of an inflationary universe with a pair of black holes in higher derivative theories has been studied. Considering a gravitational action which includes quadratic (αR2\alpha R^{2}) and/or cubic term (βR3\beta R^{3}) in scalar curvature in addition to a cosmological constant (Λ\Lambda) in semiclassical approximation with Hartle-Hawking boundary condition, the probability has been evaluated. The action of the instanton responsible for creating such a universe, with spatial section with S1XS2S^{1}XS^{2} topology, is found to be less than that with a spatial S3S^{3} topology, unless α<18Λ\alpha < - \frac{1}{8 \Lambda} in R2R^{2}-theory. In the R3R^{3} theory, however, there exists a set of solutions without a cosmological constant when βR2=1\beta R^{2} = 1 and α=3β\alpha = - 3 \sqrt{\beta} which admit primordial black holes (PBH) pair in an inflationary universe scenario. We note further that when βR21\beta R^{2} \neq 1, one gets PBH pairs in the two cases : (i) with α\alpha and Λ\Lambda both positive and (ii) with Λ\Lambda positive and α\alpha negative satisfying a constraint 6αΛ>16 | \alpha | \Lambda > 1. However, the relative probability for creation of an inflationary universe with a pair of black holes in the R3R^{3}-theory suppresses when α>2β\alpha > - 2 \sqrt{\beta} or α<2β|\alpha| < 2 \sqrt{\beta} . However, if the above constraints are relaxed one derives interesting results leading to a universe with PBH in R3R^{3}-theory without cosmological constant. PACS No(s). : 04.20.Jb, 04.60.+n, 98.80.HwComment: 15 pages, No figures. accepted in Int. J. Mod. Phys. D (2001

    Tunable electronic anisotropy in single-crystal A2Cr3As3 (A = K, Rb) quasi-one-dimensional superconductors

    Full text link
    Single crystals of A2Cr3As3 (A = K, Rb) were successfully grown using a self-flux method and studied via structural, transport and thermodynamic measurement techniques. The superconducting state properties between the two species are similar, with critical temperatures of 6.1 K and 4.8 K in K2Cr3As3 and Rb2Cr3As3, respectively. However, the emergence of a strong normal state electronic anisotropy in Rb2Cr3As3 suggests a unique electronic tuning parameter is coupled to the inter-chain spacing in the A2Cr3As3 structure, which increases with alkali metal ionic size while the one-dimensional [(Cr3As3)^{2-}]_{\infty} chain structure itself remains essentially unchanged. Together with dramatic enhancements in both conductivity and magnetoresistance (MR), the appearance of a strong anisotropy in the MR of Rb2Cr3As3 is consistent with the proposed quasi-one-dimensional character of band structure and its evolution with alkali metal species in this new family of superconductors.Comment: 6 pages, 8 figures; to appear in Phys. Rev.

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Na2V3O7, a frustrated nanotubular system with spin-1/2 diamond rings

    Full text link
    Following the recent discussion on the puzzling nature of the interactions in the nanotubular system Na2V3O7, we present a detailed ab-initio microscopic analysis of its electronic and magnetic properties. By means of a non-trivial downfolding study we propose an effective model in terms of tubes of nine-site rings with the geometry of a spin-diamond necklace with frustrated inter-ring interactions. We show that this model provides a quantitative account of the observed magnetic behavior.Comment: 5 pages, 5 figures. Phys. Rev. Lett. (in press

    Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

    Full text link
    We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman-Robertson-Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure
    corecore