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Abstract 
An investigation of the natural convection boundary layer 
adjacent to an inclined semi-infinite plate subject to a 
temperature boundary condition which follows a ramp function 
up until some specified time and then remains constant is 
reported. The development of the flow from start-up to a steady-
state has been described based on scaling analyses and verified 
by numerical simulations. Attention in this study has been given 
to fluids having a Prandtl number Pr less than unity. The 
boundary layer flow depends on the comparison of the time at 
which the ramp heating is completed and the time at which the 
boundary layer completes its growth. If the ramp time is long 
compared with the steady state time, the layer reaches a quasi 
steady mode in which the growth of the layer is governed solely 
by the thermal balance between convection and conduction. On 
the other hand, if the ramp is completed before the layer becomes 
steady; the subsequent growth is governed by the balance 
between buoyancy and inertia, as for the case of instantaneous 
heating.  
  
Introduction It is well known that natural convection heat 
transfer occurrs as a result of temperature differences in an 
enclosure or near a heated or cooled flat plate. Natural convection 
along an inclined plate has received less attention than the cases 
of vertical and horizontal plates. However, this configuration is 
very frequently encountered in engineering devices and in the 
natural environment. A number of researchers have considered an 
inclined, semi infinite flat plate in their research because of its 
engineering applications. Some of these are [1, 2, 7, 9]. Most of 
these studies have been conducted by either numerical 
simulations or experimental observations. There is no evidence of 
investigation of such problems using scaling analyses to obtain 
the transient flow behavior which is of great fundamental interest 
and of practical importance. 
 
Scaling has been used by many researchers to discover the 
transient flow development for different kinds of geometries and 
thermal forcing. To accomplish this in a compact and effective 
format is the objective of this article. Scale analysis is a cost-
effective approach that can be applied as a first step in 
understanding the physics behind the fluid flow and heat transfer 
issues. The results of scale analysis can serve as a guide for both 
experimental and numerical investigations.    
 
An extensive investigation of the transient behavior of natural 
convection of a two dimensional side-heated rectangular cavity 
has been carried out by Patterson & Imberger [4]. Schladow, 
Patterson & Street [8] conducted a series of two- and three- 
dimensional numerical simulations of transient flow in a side-
heated cavity and their simulations generally agree with the 
results of the scaling arguments developed by Patterson & 
Imberger [4]. 
 
Lei & Patterson [3] present a scaling analysis and establish 
relevant scales to quantify the flow properties in different flow 

regimes of the unsteady natural convection flow in a gently 
sloped shallow wedge induced by the absorption of solar 
radiation. The authors classify the flow development largely into 
one of three regimes: a conductive regime, a transitional regime 
and a convective regime, depending on the Rayleigh number. 
Poulikakos & Bejan [5] reported the outcome of a study on 
thermal convection inside a half isosceles triangular cavity with a 
cold upper wall, a hot horizontal bottom, and an insulated vertical 
wall. The transient behavior of the fluid is examined based on 
scaling analyses. The transient phenomenon begins with a sudden 
cooling of the upper slopped wall. It was shown that both walls 
develop hydrodynamic and thermal boundary layers whose 
thicknesses increase towards steady-state values. 
  
From the above review, it is found that the behavior of the 
transient flow due to ramp heating, which increases linearly over 
a certain time period and is then followed by constant heating, 
has not yet been investigated. In this study, an investigation of 
the natural convection boundary layer adjacent to an inclined flat 
plate subject to ramp heating is carried out to develop scaling 
relations for characterizing the flow behavior at different stages 
of the flow development. These scaling relations are then 
validated by a series of numerical simulations with selected 
values of the Prandtl number (Pr) and Grashof number (Gr) in 
the ranges of 0.05 ≤ Pr ≤ 0.5 and 1.44×105 ≤ Gr ≤ 4.24×107 and 
with a fixed aspect ratio A = 0.5. 
 
Problem Formulation 
The physical system sketched in figure 1 consists of an inclined 
flat plate (AB). We extend both sides of the plate equal to its 
length and form a rectangular domain which is filled with a fluid 
at a temperature Tc. If we consider the plate as the hypotenuse of 
a right angled triangle then the altitude is h, the length of the base 
is l and the angle of the plate that makes with the base is θ.  
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Figure 1. Schematic of the boundary layers developing along the inclined 

wall.  
 

Except for the plate (the AB section shown in figure 1) all other 
walls of the rectangle are assumed to be adiabatic. At the time t = 
0, the plate temperature and the inside temperatures are the same. 
The temperature on the plate then increases according to a ramp 
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function for a certain period of time, after which a constant 
temperature is maintained. 
 
Under the Boussinesq approximations the governing continuity, 
momentum and the energy equations take the following forms. 
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where u and v are the velocity components parallel and normal to 
the inclined surface respectively. T is the temperature and p is the 
pressure, t is the time, g is the acceleration due to gravity, θ is the 
angle of the inclined plate with the horizontal base, and ν, ρ, β 
and κ the kinematic viscosity, density, coefficient of thermal 
expansion and thermal conductivity of the fluid respectively.  
 
The thermal boundary condition on the heated plate is define as  
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where tp is the length of the ramp heating function. 
 
 
Scaling Analysis 
Thermal Layer Development 
The start-up stage is initially dominated by heat transfer via 
conduction through the hot plate, resulting in a thermal boundary 
layer of a thickness O(δT). Within the boundary layer the 
dominant balance is that between the thermal inertia term and the 
y diffusion term in the energy equation (4): 
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In Eqn (2) the unsteady inertia term is of O(u/t), viscous term 
O(νu/δT

2), advection term O(u2/AB). The ratio of the advection 
term to the unsteady term is O(ut/AB). For very small time 
ut/AB<<1. Therefore the advection term is not significant for 
small time. The ratio of the unsteady to the viscous terms is 
(u/t)/(νu/δT

2) ~ δ2/(νt) ~ 1/Pr. Where Pr = ν/κ. For Pr << 1 the 
viscous term is much smaller than the unsteady term and the 
correct balance is between the unsteady and buoyancy terms. 
However Pr >> 1 the unsteady term is much smaller than the 
viscous term and the correct balance is between viscosity and 
buoyancy. If Pr ~ O(1), then the unsteady and viscous terms are 
of the same order and both terms need to be included in a balance 
with the buoyancy term.  
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The slope or aspect ratio is tanθ = A and cosθ = l/(l2+h2)1/2 = 
1/(1+A2)1/2. Hence, 
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Now the balance in the inclined momentum equation holds as 
long as t < tp, where the Rayleigh number is defined by Ra = 
gβΔTh3/(κν). This continues until the balance between convection 
and conduction occurs at time ts
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Using the boundary layer thickness scale (5) and the velocity 
scales (6) and (7) we conclude that the growth of the thermal 
boundary layer along the top wall ends at time ts when 
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so long as ts<tp. This is the same as saying that tp > 
(1+Pr)1/2(1+A2)1/2h2/[A(RaPr)1/2κ], which is the steady state time 
for an instantaneous function start up (see [6]). This means that if 
the ramp time is longer than the time it would have taken for the 
step function start up to reach a steady state boundary layer, then 
the boundary layer will have reached a balance before the ramp 
has finished. 
 
The thickness of the boundary layer along the plate at the steady 
state time is 
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At the time when the plate boundary layer is steady, the u 
velocity scale is 
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On the other hand, if tp<(1+Pr)1/2(1+A2)1/2h2/[A(RaPr)1/2κ], then 
ts>tp and the thermal boundary layer has not finished growing 
when the ramp finishes. This means that the boundary layer 
grows as though the startup were instantaneous and reaches a 
steady state at (1+Pr)1/2(1+A2)1/2h2/[A(RaPr)1/2κ], and there is no 
difference between the ramp and instantaneous start up cases. 
 
In the former case with the start up time less than the ramp time, 
once ts is reached, then the boundary layer stops growing 
according to κ1/2t1/2. The thermal boundary layer is in a quasi 
steady mode with convection balancing conduction, and 
(viscosity + unsteady) balancing buoyancy. Further increase of 
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the heat input simply accelerates the flow to maintain the proper 
thermal balance. For the ramp function startup, this means that 
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At this time the unsteady term is not important. Therefore, 
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where sinθ = h/(l2+h2)1/2 = A/(1+A2)1/2, and 
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At t ~ tp, (12) and (13) become the same scales as those for the 
step function start up, so the only difference between the ramp 
and step function start up is what happens between ts and tp. After 
tp, the boundary layer does not know that it started up from a 
ramp. Notice that the boundary layer thickness decreases beyond 
tp. This has to happen as the fluid is accelerating and is therefore 
more effective in convecting the heat away; the boundary layer 
has to contract so that conduction is increased to balance that. 
 
Viscous Layer Development 
Balance between viscous and inertia terms of the momentum 
equation 

Tv Prt δνδ 2/12/12/1 ~~  (14) 
 
When Pr < 1 then δν will be always smaller than δT, that means 
the viscous boundary layer is always embedded within the 
thermal boundary layer. The opposite case happens when Pr > 1. 
When the thermal layer has reached the steady state, the viscous 
layer has a thickness of order 
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Numerical Procedure 
In order to validate the scales derived in the previous section, a 
series of numerical simulations have been carried out for the 
cases described in Table 1. Equations (1) - (4) are solved along 
with the initial and boundary conditions using the SIMPLE 
scheme in Fluent 6.3.26, in which the spatial derivatives are 
discretized with a second order upwind scheme and the diffusion 
terms with a second order center-differenced scheme. The 
temporal derivatives are discretized with a second order implicit 
scheme. To ensure that a sufficiently high accuracy is achieved in 
the numerical simulations, a non-uniform computational mesh 
has been used which concentrates points in the boundary layer 
and near the plate and is relatively coarse in the interior of the big 
domain.  
 
Mesh and time step dependence tests have been carried out to 
ensure the accuracy of the numerical solutions. The time steps 
have been chosen in such a way that the CFL (Courant-Freidrich-
Lewy) number remains the same for all meshes. The tests are 
conducted for the highest Grashof number case. It is expected 
that the selected mesh for the highest Grashof number is also 

appropriate for the lower Grashof numbers. Four different mesh 
sizes have been tested for A = 0.5. The time histories of the 
calculated velocity with four different meshes are plotted in 
figure 2. The maximum variation of the velocity between the 
coarsest and finest meshes is 0.54%. Therefore any of these 
meshes is appropriate for this simulation, and the mesh size of 
340×200 is adopted for the whole range of simulation. 
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Figure 2: Time series of the maximum velocity parallel to the inclined 
surface calculated on the line normal to the surface at the mid point for A 
= 0.5 while Gr = 4.24×107 and Pr = 0.72. 
 
Validation of the scaling 
A total of ten simulations have been performed to verify the 
scaling relations. Table 1 shows the details of the flow 
parameters considered for this study. Here, Runs 1-7 with Gr = 
4.24×107, 1.06×107, 8.48×106, 4.24×106, 2.15×106, 1.80×106 and 
1.44×106 while keeping A = 0.5 and Pr = 0.72 unchanged have 
been carried out to show the dependence of the scaling relations 
on the Grashof number Gr; and Runs 8-10 and Run 1  with Pr = 
0.5, 0.1, 0.05 and 0.72 while keeping A = 0.5 and Gr = 4.24×107 
unchanged have been carried out to show the dependence of the 
scaling relations on the Prandtl number Pr.   
 
The velocity parallel to the plate and the temperature have been 
recorded at several locations along a line perpendicular to the 
plate at the mid point to obtain the velocity and temperature 
profiles. The maximum velocity parallel to the plate has been 
calculated as a characteristic velocity (u) along that line. This 
velocity is used to verify the velocity scale relation.  
 

Table1: Values of  Gr and Pr for the 10 runs 
Runs  Gr Pr 

1 4.24×107 0.72 
2 1.06×107 0.72 
3 8.48×106 0.72 
4 4.24×106 0.72 
5 2.15×106 0.72 
6 1.80×106 0.72 
7 1.44×106 0.72 
8 4.24×107 0.5 
9 4.24×107 0.1 
10 4.24×107 0.05 

 
Time series of the maximum velocity parallel to the inclined 
surface calculated on the line normal to the surface at the mid 
point for A = 0.5 are shown in figure 2 with Gr = 4.24×107 and 
Pr = 0.72. These velocities are calculated for four different mesh 
sizes. The ramp time has been set to 20s. As is mentioned in the 
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scaling analysis, the ramp time may be larger or smaller than the 
steady state time for the boundary layer. If the ramp time is larger 
than the steady state time, then after that time the velocity 
continues to increase as the plate is still being heated up. 

However, the growth rate of the velocity is smaller compared to 
the velocity during the earlier phase. The two-stage growth of the 
velocity is clearly seen in the simulation (see figure 2). It is seen 

in this figure that at about 11.5s the boundary layer becomes 
quasi steady. However, the velocity still increases as the 
temperature on the plate is still increasing. At t = 20s the ramp 
finishes and the boundary layer becomes completely steady at 
about 22s.    
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Figure 3. (a) hus/(κRa1/2) plotted against 
h2/3(RaPr)1/3(1+A2)1/6/[(κtpA)1/3(1+Pr)1/3]; (b) ts/(h2/κ) plotted against 
(κtp)1/3(1+Pr)1/3(1+A2)1/3/[(hA)2/3(RaPr)1/3]; �, run 1; Δ, run 2; ∇, run 3; 

, run 4; , run 5; ◊, run 6; ο, run 7; , run 8; , run 9; , run 10. 
Solid line, linear fit. 
 
Numerical results of the scaling laws for the steady state time and 
the velocity parallel to the plate, (8) and (10) respectively are 
presented in figure 3. It is seen in the figure 3 that the numerical 
results agree very well with the scaling relations. For all the cases 
calculated in this study, the numerical results fall approximately 
onto a straight line, which confirms that the scaling relations (8) 
and (10) properly describe the boundary layer in the steady state. 
 
Conclusions 
The natural convection boundary layer adjacent to an inclined 
semi-infinite plate subject to a temperature boundary condition 
which follows a ramp function up until a specified time, and then 
remains constant, has been investigated. The boundary layer flow 
depends on the comparison of the time at which the ramp heating 
is completed with the time at which the boundary layer completes 
its growth. If the ramp time is long compared with the steady 
state time, the thermal boundary layer reaches a quasi steady 
mode in which the growth of the layer is governed solely by the 

thermal balance between convection and conduction. On the 
other hand, if the ramp is completed before the thermal boundary 
layer becomes steady; the subsequent growth is governed by the 
balance between buoyancy and inertia, as for the case of 
instantaneous heating. Several scaling relations have been 
established in this study, which include the maximum velocity 
parallel to the inclined plate inside the boundary layer (u), the 
time for the boundary layer to reach the steady state (ts) and the 
thermal and viscous boundary layer thicknesses (δT and δv). The 
comparisons between the scaling relationships and the numerical 
simulations demonstrate that the scaling results agree very well 
with the numerical simulations. Hence the numerical results have 
confirmed the scaling relations properly describe the overall flow 
development. 
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