1,660 research outputs found

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    Opioids depress cortical centers responsible for the volitional control of respiration

    Get PDF
    Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem

    The VAST Survey - IV. A wide brown dwarf companion to the A3V star ζ\zeta Delphini

    Full text link
    We report the discovery of a wide co-moving substellar companion to the nearby (D=67.5±1.1D=67.5\pm1.1 pc) A3V star ζ\zeta Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multiplicity survey. ζ\zeta Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the ζ\zeta Del system was estimated as 525±125525\pm125 Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of ζ\zeta Del B is shown to be consistent with a mid-L dwarf (L5±25\pm2), at a temperature of 1650±2001650\pm200 K. Combining the measured near-infrared magnitude of ζ\zeta Del B with the estimated temperature leads to a model-dependent mass estimate of 50±1550\pm15 MJup_{\rm Jup}, corresponding to a mass ratio of q=0.019±0.006q=0.019\pm0.006. At a projected separation of 910±14910\pm14 au, ζ\zeta Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Society, 2014 September 25. Revised to incorporate typographical errors noted during the proofing proces

    The VAST Survey - III. The multiplicity of A-type stars within 75 pc

    Full text link
    With a combination of adaptive optics imaging and a multi-epoch common proper motion search, we have conducted a large volume-limited (D \le 75 pc) multiplicity survey of A-type stars, sensitive to companions beyond 30 au. The sample for the Volume-limited A-STar (VAST) survey consists of 435 A-type stars: 363 stars were observed with adaptive optics, 228 stars were searched for wide common proper motion companions and 156 stars were measured with both techniques. The projected separation coverage of the VAST survey extends from 30 to 45,000 au. A total of 137 stellar companions were resolved, including 64 new detections from the VAST survey, and the companion star fraction, projected separation distribution and mass ratio distribution were measured. The separation distribution forms a log-normal distribution similar to the solar-type binary distribution, but with a peak shifted to a significantly wider value of 387 (+132,-98) au. Integrating the fit to the distribution over the 30 to 10,000 au observed range, the companion star fraction for A-type stars is estimated as 33.8%+-2.6%. The mass ratio distribution of closer (<125 au) binaries is distinct from that of wider systems, with a flat distribution for close systems and a distribution that tends towards smaller mass ratios for wider binaries. Combining this result with previous spectroscopic surveys of A-type stars gives an estimate of the total companion star fraction of 68.9%+-7.0%. The most complete assessment of higher order multiples was estimated from the 156-star subset of the VAST sample with both adaptive optics and common proper motion measurements, combined with a literature search for companions, yielding a lower limit on the frequency of single, binary, triple, quadruple and quintuple A-type star systems of 56.4 (-4.0,+3.8), 32.1 (-3.5,+3.9), 9.0 (-1.8,+2.8), 1.9 (-0.6,+1.8) and 0.6 (-0.2,+1.4) per cent, respectively.Comment: 46 pages, 24 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Society, 7th October 201

    Experimental Design for the Gemini Planet Imager

    Full text link
    The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the "hot-start" model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted to PAS

    Mapping long-term functional changes in cerebral blood flow by arterial spin labeling

    Get PDF
    Although arterial spin labeling (ASL) is appealing for mapping long-term changes in functional activity, inter-sessional variations in basal blood flow, arterial transit times (ATTs), and alignment errors, can result in significant false activation when comparing images from separate sessions. By taking steps to reduce these sources of noise, this study assessed the ability of ASL to detect functional CBF changes between sessions. ASL data were collected in three sessions to image ATT, resting CBF and CBF changes associated with motor activation (7 participants). Activation maps were generated using rest and task images acquired in the same session and from sessions separated by up to a month. Good agreement was found when comparing between-session activation maps to within-session activation maps with only a 16% decrease in precision (within-session: 90 ± 7%) and a 13% decrease in the Dice similarity (within-session: 0.75 ± 0.07) coefficient after a month. In addition, voxel-wise reproducibility (within-session: 4.7 ± 4.5%) and reliability (within-session: 0.89 ± 0.20) of resting grey-matter CBF decreased by less than 18% for the betweensession analysis relative to within-session values. ATT variability between sessions (5.0 ± 2.7%) was roughly half the between-subject variability, indicating that its effects on longitudinal CBF were minimal. These results demonstrate that conducting voxel-wise analysis on CBF images acquired on different days is feasible with only modest loss in precision, highlighting the potential of ASL for longitudinal studies

    Orbits for the Impatient: A Bayesian Rejection Sampling Method for Quickly Fitting the Orbits of Long-Period Exoplanets

    Full text link
    We describe a Bayesian rejection sampling algorithm designed to efficiently compute posterior distributions of orbital elements for data covering short fractions of long-period exoplanet orbits. Our implementation of this method, Orbits for the Impatient (OFTI), converges up to several orders of magnitude faster than two implementations of MCMC in this regime. We illustrate the efficiency of our approach by showing that OFTI calculates accurate posteriors for all existing astrometry of the exoplanet 51 Eri b up to 100 times faster than a Metropolis-Hastings MCMC. We demonstrate the accuracy of OFTI by comparing our results for several orbiting systems with those of various MCMC implementations, finding the output posteriors to be identical within shot noise. We also describe how our algorithm was used to successfully predict the location of 51 Eri b six months in the future based on less than three months of astrometry. Finally, we apply OFTI to ten long-period exoplanets and brown dwarfs, all but one of which have been monitored over less than 3% of their orbits, producing fits to their orbits from astrometric records in the literature.Comment: 32 pages, 28 figures, Accepted to A
    corecore