317,641 research outputs found

    Origin of sawtooth domain walls in ferroelectrics

    Full text link
    Domains and domain walls are among the key factors that determine the performance of ferroelectric materials. In recent years, a unique type of domain walls, i.e., the sawtooth-shaped domain walls, has been observed in BiFeO3_{3} and PbTiO3_{3}. Here, we build a minimal model to reveal the origin of these sawtooth-shaped domain walls. Incorporating this model into Monte-Carlo simulations shows that (i) the competition between the long-range Coulomb interaction (due to bound charges) and short-range interaction (due to opposite dipoles) is responsible for the formation of these peculiar domain walls and (ii) their relative strength is critical in determining the periodicity of these sawtooth-shaped domain walls. Necessary conditions to form such domain walls are also discussed

    Polarized Curvature Radiation in Pulsar Magnetosphere

    Full text link
    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone, the waves can be divided into two natural wave mode components, the ordinary (O) mode and the extraord nary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O-mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the co-rotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the co-rotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of out-coming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA

    Compact and Broadband Microstrip-Line-Fed Modified Rhombus Slot Antenna

    Get PDF
    The printed microstrip-line-fed broadband rhombus slot antenna is investigated in this paper. With the use of the offset microstrip feed line and the corner-truncated protruded ground plane, the bandwidth enhancement and the slot size reduction for the proposed slot antenna can be obtained. The experimental results demonstrate that the impedance bandwidth for 10 dB return loss reaches 5210 MHz (108.2%, 2210-7420 MHz), which is about 2.67 times of a conventional microstrip-line-fed rhombus slot antenna. This bandwidth can provide with the wireless communication services operating in wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) bands. Under the use of the protruded ground plane, the slot size can be reduced by about 52%. Details of simulated and measured results are presented and discussed

    Effects of the sintering atmosphere on the superconductivity of SmFeAsO1-xFx compounds

    Full text link
    A series of SmFeAsO1-xFx samples were sintered in quartz tubes filled with air of different pressures. The effects of the sintering atmosphere on the superconductivity were systematically investigated. The SmFeAsO1-xFx system maintains a transition temperature (Tc) near 50 K until the concentration of oxygen in quartz tubes increases to a certain threshold, after which Tc decreases dramatically. Fluorine losses, whether due to vaporization, reactions with starting materials, and reactions with oxygen, proved to be detrimental to the superconductivity of this material. The deleterious effects of the oxygen in the sintering atmosphere were also discussed in detail.Comment: 9 pages, 5 figure

    Fiber Based Multiple-Access Optical Frequency Dissemination

    Full text link
    We demonstrate a fiber based multiple-access optical frequency dissemination scheme. Without using any additional laser sources, we reproduce the stable disseminated frequency at an arbitrary point of fiber link. Relative frequency stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber network for highly-precision synchronization of optical frequency is made possible by this method and its applications are discussed.Comment: 5 pages, 3 figure

    Geometric phase in dephasing systems

    Full text link
    Beyond the quantum Markov approximation, we calculate the geometric phase of a two-level system driven by a quantized magnetic field subject to phase dephasing. The phase reduces to the standard geometric phase in the weak coupling limit and it involves the phase information of the environment in general. In contrast with the geometric phase in dissipative systems, the geometric phase acquired by the system can be observed on a long time scale. We also show that with the system decohering to its pointer states, the geometric phase factor tends to a sum over the phase factors pertaining to the pointer states.Comment: 4 page
    corecore