1,364 research outputs found
Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point
We consider the Farey fraction spin chain in an external field . Using
ideas from dynamical systems and functional analysis, we show that the free
energy in the vicinity of the second-order phase transition is given,
exactly, by
Here is a reduced
temperature, so that the deviation from the critical point is scaled by the
Lyapunov exponent of the Gauss map, . It follows that
determines the amplitude of both the specific heat and susceptibility
singularities. To our knowledge, there is only one other microscopically
defined interacting model for which the free energy near a phase transition is
known as a function of two variables.
Our results confirm what was found previously with a cluster approximation,
and show that a clustering mechanism is in fact responsible for the transition.
However, the results disagree in part with a renormalisation group treatment
A note on the algebraic growth rate of Poincar\'e series for Kleinian groups
In this note we employ infinite ergodic theory to derive estimates for the
algebraic growth rate of the Poincar\'e series for a Kleinian group at its
critical exponent of convergence.Comment: 8 page
Coupling a model of human thermoregulation with computational fluid dynamics for predicting human-environment interaction
This paper describes the methods developed to couple a commercial CFD program with a multi-segmented model of human thermal comfort and physiology. A CFD model is able to predict detailed temperatures and velocities of airflow around a human body, whilst a thermal comfort model is able to predict the response of a human to the environment surrounding it. By coupling the two models and exchanging information about the heat transfer at the body surface the coupled system can potentially predict the response of a human body to detailed local environmental conditions. This paper presents a method of exchanging data, using shared files, to provide a means of dynamically exchanging simulation data with the IESD-Fiala model during the CFD solution process. Additional
code is used to set boundary conditions for the CFD simulation at the body surface as determined by the IESD-Fiala model and to return information about local environmental conditions adjacent to the body surface as determined by the CFD simulation. The coupled system is used to model a human subject in a naturally ventilated environment. The resulting ventilation flow pattern agrees well with other numerical and
experimental work
Parameterizing by the Number of Numbers
The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called, "the art of problem parameterization". In this paper we
introduce and explore a novel but general form of parameterization: the number
of numbers. Several classic numerical problems, such as Subset Sum, Partition,
3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with
Target Sums, have multisets of integers as input. We initiate the study of
parameterizing these problems by the number of distinct integers in the input.
We rely on an FPT result for ILPF to show that all the above-mentioned problems
are fixed-parameter tractable when parameterized in this way. In various
applied settings, problem inputs often consist in part of multisets of integers
or multisets of weighted objects (such as edges in a graph, or jobs to be
scheduled). Such number-of-numbers parameterized problems often reduce to
subproblems about transition systems of various kinds, parameterized by the
size of the system description. We consider several core problems of this kind
relevant to number-of-numbers parameterization. Our main hardness result
considers the problem: given a non-deterministic Mealy machine M (a finite
state automaton outputting a letter on each transition), an input word x, and a
census requirement c for the output word specifying how many times each letter
of the output alphabet should be written, decide whether there exists a
computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W[1]. If the question is whether there
exists an input word x such that a computation of M on x outputs a word that
meets c, the problem becomes fixed-parameter tractable
On vertex coloring without monochromatic triangles
We study a certain relaxation of the classic vertex coloring problem, namely,
a coloring of vertices of undirected, simple graphs, such that there are no
monochromatic triangles. We give the first classification of the problem in
terms of classic and parametrized algorithms. Several computational complexity
results are also presented, which improve on the previous results found in the
literature. We propose the new structural parameter for undirected, simple
graphs -- the triangle-free chromatic number . We bound by
other known structural parameters. We also present two classes of graphs with
interesting coloring properties, that play pivotal role in proving useful
observation about our problem. We give/ask several conjectures/questions
throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac
Global Conformational Dynamics of a Y-Family DNA Polymerase during Catalysis
High-resolution analysis of protein, and DNA conformational changes during DNA polymerization, established relationships between the enzymatic function and conformational dynamics of individual domains for a DNA polymerase
Transition from Townsend to glow discharge: subcritical, mixed or supercritical
The full parameter space of the transition from Townsend to glow discharge is
investigated numerically in one space dimension in the classical model: with
electrons and positive ions drifting in the local electric field, impact
ionization by electrons ( process), secondary electron emission from
the cathode ( process) and space charge effects. We also perform a
systematic analytical small current expansion about the Townsend limit up to
third order in the total current that fits our numerical data very well.
Depending on and system size pd, the transition from Townsend to glow
discharge can show the textbook subcritical behavior, but for smaller values of
pd, we also find supercritical or some intermediate ``mixed'' behavior. The
analysis in particular lays the basis for understanding the complex
spatio-temporal patterns in planar barrier discharge systems.Comment: 12 pages, 10 figures, submitted to Phys. Rev.
Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated
Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to
the image of an approaching object. These neurons are called the lobula giant movement
detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the
development of an LGMD model for use as an artificial collision detector in robotic applications.
To date, robots have been equipped with only a single, central artificial LGMD sensor, and this
triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly,
for a robot to behave autonomously, it must react differently to stimuli approaching from
different directions. In this study, we implement a bilateral pair of LGMD models in Khepera
robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD
models using methodologies inspired by research on escape direction control in cockroaches.
Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration,
the khepera robots could escape an approaching threat in real time and with a similar
distribution of escape directions as real locusts. We also found that by optimising these
algorithms, we could use them to integrate the left and right DCMD responses of real jumping
locusts offline and reproduce the actual escape directions that the locusts took in a particular
trial. Our results significantly advance the development of an artificial collision detection and
evasion system based on the locust LGMD by allowing it reactive control over robot behaviour.
The success of this approach may also indicate some important areas to be pursued in future
biological research
Semi-Automated Reconstruction of Neural Processes from Large Numbers of Fluorescence Images
We introduce a method for large scale reconstruction of complex bundles of neural processes from fluorescent image stacks. We imaged yellow fluorescent protein labeled axons that innervated a whole muscle, as well as dendrites in cerebral cortex, in transgenic mice, at the diffraction limit with a confocal microscope. Each image stack was digitally re-sampled along an orientation such that the majority of axons appeared in cross-section. A region growing algorithm was implemented in the open-source Reconstruct software and applied to the semi-automatic tracing of individual axons in three dimensions. The progression of region growing is constrained by user-specified criteria based on pixel values and object sizes, and the user has full control over the segmentation process. A full montage of reconstructed axons was assembled from the ∼200 individually reconstructed stacks. Average reconstruction speed is ∼0.5 mm per hour. We found an error rate in the automatic tracing mode of ∼1 error per 250 um of axonal length. We demonstrated the capacity of the program by reconstructing the connectome of motor axons in a small mouse muscle
- …