103 research outputs found

    A robust system for RNA interference in the chicken using a modified microRNA operon

    Get PDF
    AbstractRNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo

    Identifying the Rules of Engagement Enabling Leukocyte Rolling, Activation, and Adhesion

    Get PDF
    The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte–surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte–surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1) but not LFA1 rebinding (to ICAM1) was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and ICAM1 object densities were above a critical level. Importantly, at low densities LFA1 clustering enabled improved efficiency: adhesion exhibited measurable, cell level positive cooperativity

    Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonellaenteritidis

    Get PDF
    The NF-kB pathway plays an important role in regulating the immunity response in animals. In this study, small interfering RNAs (siRNA) were used to specifically inhibit NF-kB 1 expression and to elucidate the role of NF-kB in the signal transduction pathway of the Salmonella challenge in the chicken HD11 cell line. The cells were transfected with either NF-kB 1 siRNA, glyceraldehyde 3-phosphate dehydrogenase siRNA (positive control) or the negative control siRNA for 24 h, followed by Salmonella enteritidis (SE) challenge or non-challenge for 1 h and 4 h. Eight candidate genes related to the signal pathway of SE challenge were selected to examine the effect of NF-kB 1 inhibition on their expressions by mRNA quantification. The results showed that, with a 36% inhibition of NF-kB 1 expression, gene expression of both Toll-like receptor (TLR) 4 and interleukin (IL)-6 was consistently and significantly increased at both 1 h and 4 h following SE challenge, whereas the gene expression of MyD88 and IL-1β was increased at 1 h and 4 h, respectively. These findings suggest a likely inhibitory regulation by NF-kB 1, and could lay the foundation for studying the gene network of the innate immune response of SE infection in chickens

    Biomarkers of acute lung injury: worth their salt?

    Get PDF
    The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI) and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy

    Mechanical behavior of a carbide reinforced Co-Cr eutectic alloy

    No full text
    The tensile and creep behavior of a unidirectionally solidified (Co, Cr)-(Cr, Co)7C3 monovariant eutectic alloy have been examined. The effect of fiber orientation on the tensile strength has been studied at temperatures to 2200°F. The composite was found to be anisotropic with considerable strengthening in the longitudinal direction and with the transverse and 45 deg ultimate strengths being limited by cracks initiating in the carbide phase. At room temperature, prestressing due to thermal expansion mismatch results in a large difference between the longitudinal compressive and tensile yield stresses. Longitudinal creep data for the 1800° to 2200°F temperature range are presented and examined in terms of the directional structure. The activation energy for creep is observed to be much higher than that for chromium diffusion in a Co-Cr alloy. These analyses suggest that the creep of the eutectic composite is controlled by the creep and fracture of the reinforcing carbides. © 1970 The Minerals, Metals & Materials Society - ASM International - The Materials Information Society

    Comments on the electron fractography of α-titanium

    No full text
    • …
    corecore