62 research outputs found

    Textured MoS 2 Thin Films Obtained on Tungsten: Electrical Properties of the W/MoS 2 Contact

    Get PDF
    Textured films of molybdenum disulfide have been obtained by solid state reaction between the constituents in thin films form when a (200) oriented tungsten sheet is used as substrate. The crystallites have their c axis perpendicular to the plane of the substrate. The annealing conditions are T=1073K and t=30 min. The films are stoichoimetric and p type. Such highly textured films are achieved without foreign atom addition (Ni, Co...). It appears, as shown by x-ray photoelectron spectroscopy, that a thin WS2 layer is present at the interface W/MoS2. The crystallization process is discussed by a van der Waals texturation (pseudoepitaxy) onto dangling bond sulfur terminated surfaces, these surfaces being ordered. After characterization of the W/MoS2 structure by x-ray diffraction and x-ray photoelectron spectroscopy, an upper electrode of tungsten was deposited by sputtering. The electrical properties of these W/MoS2/W structures have been investigated by analyzing the behavior of the current–voltage characteristics as a function of the measuring temperature. It is shown that an ohmic contact is obtained with a contact resistance smaller than the resistance of the MoS2 film

    Evolution of the Band Structure of β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content

    Get PDF
    The evolution of the band structure of β-In2 S3−3x O3x (BISO) thin films grown by physical vapor deposition, with composition x, is investigated using x-ray photoelectron spectroscopy. It is shown that the energy difference between the valence-band level and the Fermi level remains nearly constant as the optical band gap of the films increases. As a consequence, the difference between the conduction band level and the Fermi level increases as much as the optical band gap of the films. The calculation of the electronic affinity [ ] of the BISO thin films shows that it decreases linearly from 4.65 to 3.85 eV when x varies from 0 to 0.14. This will facilitate fabrication of efficient Cu(InGa)Se2-based solar cells having different absorber layer band gap

    Optical Properties of Wide Band Gap Indium Sulphide Thin Films Obtained by Physical Vapor Deposition

    Get PDF
    Thin films of indium sulphide containing oxygen have been synthesized following a dry physical process. The constituents are deposited by thermal evaporation on glass substrates and then annealed under argon flow. Polycrystalline β-In2S3 containing oxygen thin films are obtained as soon as the temperature of annealing is between 623 and 723 K. In this paper, these β-In2S3 thin films have optically been studied. The optical band gap is direct. Its value is not dependent on the temperature of annealing. It is about 2.8 eV, which is higher than that of β-In2S3 single crystal. This high value is related to the presence of oxygen in the films. The extinction coefficient k and the refractive index n of the films have also been found independent of the annealing temperature. These optical properties make the films studied good candidates to be substituted to CdS in Cu(In,Ga)Se2 based solar cells

    Effect of the deposition conditions of NiO anode buffer layers inorganic solar cells, on the properties of these cells

    Get PDF
    tNiO thin films deposited by DC reactive sputtering were used as anode buffer layer in organic photovoltaiccells (OPVs) based on CuPc/C60planar heterojunctions. Firstly we show that the properties of the NiOfilms depend on the O2 partial pressure during deposition. The films are first conductive between 0 and2% partial oxygen pressure, then they are semiconductor and p-type between 2 and 6% partial oxygenpressure, between 6 and 9% partial oxygen pressure the conduction is very low and the films seem to be n-type and finally, for a partial oxygen pressure higher than 9%, the conduction is p-type. The morphology ofthese films depends also on the O2 partial pressure. When the NiO films is thick of 4 nm, its peak to valleyroughness is 6 nm, when it is sputtered with a gas containing 7.4% of oxygen, while it is more than double,13.5 nm, when the partial pressure of oxygen is 16.67%. This roughness implies that a forming process,i.e. a decrease of the leakage current, is necessary for the OPVs. The forming process is not necessary ifthe NiO ABL is thick of 20 nm. In that case it is shown that optimum conversion efficiency is achievedwith NiO ABL annealed 10 min at 400◦C

    Synthesis of Poly[(3-(6-(9-anthracenylmethoxy)hexyl)thiophene)-co-(3-(6-bromohexyl)thiophene)] Postfunctionalized from Poly(3-(6-bromohexyl)thiophene): A Comparative Study of the Base Polymer with Its Chlorinated Analogous

    Get PDF
    A synthetic method based on the postfunctionalization of a reactive homopolymer precursor, which allows for the preparation of different copolymers derived from poly(3-alkylthiophene), was studied. Although these groups decrease the solubility of the resultant material, they enable controlling the degree of substitution to obtain a material with improved spectroscopic (absorption and emission) properties making them useful for the fabrication of electronic devices, for example, solar cells and light-emitting diodes. Furthermore, a comparative study of two halogenated (Cl and Br) reactive poly(3-ω-haloalkyl)thiophenes was carried out

    Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere

    Get PDF
    Cu2SnS3 thin film have been synthesized by solid state reaction under vapour sulphur pressure at 530 °C, during 6 h, via a sequentially deposited copper and tin layers Cu/Sn/Cu…Sn/Cu/Sn. The structure and the composition were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). X-ray diffraction revealed that as the deposited film crystallizes in the cubic structure and the crystallites exhibit preferential 111 orientation of the grains. Moreover, EPMA analysis confirmed that the obtained film is stoichiometric. The SEM study shows the presence of spherical particles of ≈100–120 nm diameters. The optical absorption coefficient and band gap of the film were estimated by means of transmission and reflection optical measurements at room temperature. A relatively high absorption coefficient in the range of 104 cm−1 was indeed obtained and the band gap value is of the order of 1.1 eV. On the other hand, the electrical conductivity of Cu2SnS3 film prepared in the present experiment is suitable for fabricating a thin film solar cell based on not cheaper and environmental friendly material

    MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor-acceptor triphenylamine

    Get PDF
    We investigate the effect of anode buffer layers (ABLs) on the performances of multi-layer heterojunction solar cells with thienylenevinylene-triphenylamine with peripheral dicyanovinylene groups (TDCV-TPA) as donor material and fullerene C-60 as acceptor. The deposition of a CuI layer between the ITO anode and the electron donor significantly improves the short-circuit current density (J(sc)) and fill factor (FF) but reduces the open-circuit voltage (V-oc). On the other hand, a MoO3 buffer layer increases the V-oc but leads to limited J(sc) and FF values, thus reducing power conversion efficiency (PCE). In this context, we show that the use of a hybrid anode buffer layer MoO3/CuI leads to a considerable improvement of the cells performances and a PCE of 2.50% has been achieved. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole injection barrier, CuI improves the conductivity of the organic film through an improvement of molecular order while MoO3 prevents leakage current through the diode. Finally the results of a cursory study of the ageing process provide further support to this interpretation of the effects of the various buffer layers. (C) 2012 Elsevier B.V. All rights reserved

    Improvement of pentathiophene/fullerene planar heterojunction organic photovoltaic cells through MoO3/CuI anode buffer bilayer

    Get PDF
    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/ABL/Pentathiophene/fullerene /Alq3/Al with ABL = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as ABL. In order to understand these results the pentathiophene films deposited onto the different ABLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer

    Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Get PDF
    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3 /CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer
    • …
    corecore