2,463 research outputs found
SAURON's Challenge for the Major Merger Scenario of Elliptical Galaxy Formation
The intrinsic anisotropy delta and flattening epsilon of simulated merger
remnants is compared with elliptical galaxies that have been observed by the
SAURON collaboration, and that were analysed using axisymmetric Schwarzschild
models. Collisionless binary mergers of stellar disks and disk mergers with an
additional isothermal gas component, neglecting star formation cannot reproduce
the observed trend delta = 0.55 epsilon (SAURON relationship). An excellent fit
of the SAURON relationship for flattened ellipticals with epsilon >= 0.25 is
however found for merger simulations of disks with gas fractions >= 20%,
including star formation and stellar energy feedback. Massive black hole
feedback does not strongly affect this result. Subsequent dry merging of merger
remnants however does not generate the slowly-rotating SAURON ellipticals which
are characterized by low ellipticities epsilon < 0.25 and low anisotropies.
This indicates that at least some ellipticals on the red galaxy sequence did
not form by binary mergers of disks or early-type galaxies. We show that
stellar spheroids resulting from multiple, hierarchical mergers of
star-bursting subunits in a cosmological context are in excellent agreement
with the low ellipticities and anisotropies of the slowly rotating SAURON
ellipticals and their observed trend of delta with epsilon. The numerical
simulations indicate that the SAURON relation might be a result of strong
violent relaxation and phase mixing of multiple, kinematically cold stellar
subunits with the angular momentum of the system determining its location on
the relation.Comment: 13 pages, 3 figures, submitted to Ap
Monte Carlo simulations of the halo white dwarf population
The interpretation of microlensing results towards the Large Magellanic Cloud
(LMC) still remains controversial. Whereas white dwarfs have been proposed to
explain these results and, hence, to contribute significantly to the mass
budget of our Galaxy, there are as well several constraints on the role played
by white dwarfs. In this paper we analyze self-consistently and simultaneously
four different results, namely, the local halo white dwarf luminosity function,
the microlensing results reported by the MACHO team towards the LMC, the
results of Hubble Deep Field (HDF) and the results of the EROS experiment, for
several initial mass functions and halo ages. We find that the proposed
log-normal initial mass functions do not contribute to solve the problem posed
by the observed microlensing events and, moreover, they overproduce white
dwarfs when compared to the results of the HDF and of the EROS survey. We also
find that the contribution of hydrogen-rich white dwarfs to the dynamical mass
of the halo of the Galaxy cannot be more than .Comment: 17 pages, 10 figures; accepted for publication in Astronomy and
Astrophysic
About the morphology of dwarf spheroidal galaxies and their dark matter content
The morphological properties of the Carina, Sculptor and Fornax dwarfs are
investigated using new wide field data with a total area of 29 square degrees.
The stellar density maps are derived, hinting that Sculptor possesses tidal
tails indicating interaction with the Milky Way. Contrary to previous studies
we cannot find any sign of breaks in the density profiles for the Carina and
Fornax dwarfs. The possible existence of tidal tails in Sculptor and of King
limiting radii in Fornax and Carina are used to derive global M/L ratios,
without using kinematic data. By matching those M/L ratios to kinematically
derived values we are able to constrain the orbital parameters of the three
dwarfs. Fornax cannot have M/L smaller than 3 and must be close to its
perigalacticon now. The other extreme is Sculptor that needs to be on an orbit
with an eccentricity bigger than 0.5 to be able to form tidal tails despite its
kinematic M/L.Comment: 9 pages, 7 figures, accepted by A&
QCD radiative and power corrections and Generalized GDH sum rules
We extend the earlier suggested QCD-motivated model for the -dependence
of the generalized Gerasimov-Drell-Hearn (GDH) sum rule which assumes the
smooth dependence of the structure function , while the sharp dependence
is due to the contribution and is described by the elastic part of the
Burkhardt-Cottingham sum rule. The model successfully predicts the low crossing
point for the proton GDH integral, but is at variance with the recent very
accurate JLAB data. We show that, at this level of accuracy, one should include
the previously neglected radiative and power QCD corrections, as boundary
values for the model. We stress that the GDH integral, when measured with such
a high accuracy achieved by the recent JLAB data, is very sensitive to QCD
power corrections. We estimate the value of these power corrections from the
JLAB data at . The inclusion of all QCD corrections leads
to a good description of proton, neutron and deuteron data at all .Comment: 10 pages, 4 figures (to be published in Physical Review D
Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids
The observed relation between central black hole mass and spheroid velocity
dispersion is interpreted in terms of a self-regulation model that incorporates
a viscous Keplerian accretion disk to feed the black hole, embedded in a
massive, self-gravitating star forming disk that eventually populates the
spheroid. The model leads to a constant ratio between black hole mass and
spheroid mass which is equal to the inverse of the critical Reynolds number for
the onset of turbulence in the accretion disk surrounding the central black
hole. Applying the fundamental plane correlation for spheroids, we find that
the black hole mass has a power-law dependence on the spheroid velocity
dispersion with a slope in the range of 4-5. We explain the larger scatter in
the Magorrian relation with respect to the black hole mass-spheroid velocity
dispersion relationship as a result of secular evolution of the spheroid that
primarily affects its luminosity and to a much lesser extent its velocity
dispersion.Comment: 12 pages, no figures, submitted to ApJ Letter
Photometric Variability Among the Brightest Asymptotic Giant Branch Stars Near the Center of M32
Deep K' images with 0.1 arcsec angular resolution, obtained with ALTAIR+NIRI
on Gemini North, are used to investigate photometric variablity among the
brightest asymptotic giant branch (AGB) stars in the central regions of M32.
Based on a comparison with brightnesses obtained from the K-band data discussed
by Davidge et al. (2000, ApJ, 545, L89), it is concluded that (1) at least 60%
of bright AGB stars near the center of M32 are photometrically variable, and
(2) the amplitudes of the light variations are similar to those of long period
variables in the Galactic bulge. We do not find evidence for a population of
large amplitude variables, like those detected by IRAS in the Galactic bulge.
The technique discussed here may prove useful for conducting an initial
reconnaisance of photometric variability among AGB stars in spheroids in the
Virgo cluster and beyond, where the required long exposure times may restrict
observations to only a few epochs.Comment: 8 pages of text, 3 postscript figures. ApJ (letters) in pres
Cloud Dispersal in Turbulent Flows
Cold clouds embedded in warm media are very common objects in astrophysics.
Their disruption timescale depends strongly on the dynamical configuration. We
discuss the evolution of an initially homogeneous cold cloud embedded in warm
turbulent gas. Within a couple of dynamical timescales, the filling factor of
the cold gas within the original cloud radius drops below 50%. Turbulent
diffusivities estimated from the time evolution of radial filling factor
profiles are not constant with time. Cold and warm gas are bodily transported
by turbulence and mixed. This is only mildly indicated by column density maps.
The radiation field within the cloud, however, increases by several orders of
magnitudes due to the mixing, with possible consequences for cloud chemistry
and evolution within a few dynamical timescales.Comment: 11 pages, 12 figures, accepted by MNRA
The Validity of the Adiabatic Contraction Approximation for Dark Matter Halos
We use high resolution numerical simulations to investigate the adiabatic
contraction of dark matter halos with a Hernquist density profile. We test the
response of the halos to the growth of additional axisymmetric disk potentials
with various central concentrations and the spherically symmetric potential of
a softened point mass. Adding the potentials on timescales that are long
compared to the dynamical time scale of the halo, the contracted halos have
density profiles that are in excellent agreement with analytical predictions
based on the conservation of the adiabatic invariant . This is
surprising as this quantity is strictly conserved only for particles on
circular orbits and in spherically symmetric potentials. If the same potentials
are added on timescales that are short compared to the dynamical timescale, the
result depends strongly on the adopted potential. The adiabatic approximation
still works for disk potentials. It does, however, fail for the central
potential.Comment: 7 pages, 3 figures, 1 table. Added reference. Accepted for
publication in ApJ
- …