12 research outputs found

    Cruise aerodynamics of USB nacelle/wing geometric variations

    Get PDF
    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model

    Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests

    Get PDF
    Basic pressure data are presented which was obtained from an experimental study of upper-surface blown configurations at cruise. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high-pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design

    Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    Get PDF
    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design

    Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests

    Get PDF
    The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers

    High Reynolds number test of a NACA 651-213, a equals 0.5 airfoil at transonic speeds

    Get PDF
    Wind-Tunnel tests were conducted in the Lockheed-Georgia Company's compressible flow facility to determine the transonic two-dimensional aerodynamic characteristics of a NACA 65 sub 1-213 a = 0.50 airfoil. The results are correlated with data obtained in the NASA-Langley 8-foot transonic pressure tunnel and the NAE high Reynolds number 15x60-inch two-dimensional test facility. The tests were conducted over a Mach number range from 0.60 to 0.80 and an angle of attack range from -1 deg to 8 deg. Reynolds numbers, based on the airfoil chord, were varied

    Exploratory studies of the cruise performance of upper surface blown configurations

    Get PDF
    The data and major conclusions obtained from an experimental/analytical study of upper-surface blown (USB) configurations at cruise are summarized. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design

    ON WEYL GROUPS IN MINIMAL SIMPLE GROUPS OF FINITE MORLEY RANK

    No full text
    We prove that generous non-nilpotent Borel subgroups of connected minimal simple groups of finite Morley rank are self-normalizing. We use this to introduce a uniform approach to the analysis of connected minimal simple groups of finite Morley rank through a case division incorporating four mutually exclusive classes of groups. We use these to analyze Carter subgroups and Weyl groups in connected minimal simple groups of finite Morley rank. Finally, the self-normalization theorem is applied to give a new proof of an important step in the classification of simple groups of finite Morley rank of odd type

    Chronological Index

    No full text

    Rapid estimation of wing aerodynamic characteristics for minimum induced drag.

    No full text
    corecore