56 research outputs found

    Combining aldolases and transaminases for the synthesis of 2‑amino-4-hydroxybutanoic acid

    Get PDF
    Amino acids are of paramount importance as chiral building blocks of life, for drug development in modern medicinal chemistry, and for the manufacture of industrial products. In this work, the stereoselective synthesis of (S)- and (R)-2-amino-4-hydroxybutanoic acid was accomplished using a systems biocatalysis approach comprising a biocatalytic one-pot cyclic cascade by coupling of an aldol reaction with an ensuing stereoselective transamination. A class II pyruvate aldolase from E. coli, expressed as a soluble fusion protein, in tandem with either an S- or R-selective, pyridoxal phosphate dependent transaminase was used as a catalyst to realize the conversion, with formaldehyde and alanine being the sole starting materials. Interestingly, the class II pyruvate aldolase was found to tolerate formaldehyde concentrations of up to 1.4 M. The cascade system was found to reach product concentrations for (S)- or (R)-2-amino-4-hydroxybutanoic acid of at least 0.4 M, rendering yields between 86% and >95%, respectively, productivities of >80 g L–1 d–1, and ee values of >99%.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 635595 (CarbaZymes), the Ministerio de Economía y Competitividad (MINECO), the Fondo Europeo de Desarrollo Regional (FEDER) (grant no. CTQ2015-63563-R to P.C.), and COST action CM1303 Systems Biocatalysis.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Identifying priorities for the protection of deep Mediterranean Sea ecosystems through an integrated approach

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fanelli, E., Bianchelli, S., Foglini, F., Canals, M., Castellan, G., Guell-Bujons, Q., Galil, B., Goren, M., Evans, J., Fabri, M.-C., Vaz, S., Ciuffardi, T., Schembri, P. J., Angeletti, L., Taviani, M., & Danovaro, R. Identifying priorities for the protection of deep Mediterranean Sea ecosystems through an integrated approach. Frontiers in Marine Science, 8, (2021): 698890, https://doi.org/10.3389/fmars.2021.698890.Benthic habitats of the deep Mediterranean Sea and the biodiversity they host are increasingly jeopardized by increasing human pressures, both direct and indirect, which encompass fisheries, chemical and acoustic pollution, littering, oil and gas exploration and production and marine infrastructures (i.e., cable and pipeline laying), and bioprospecting. To this, is added the pervasive and growing effects of human-induced perturbations of the climate system. International frameworks provide foundations for the protection of deep-sea ecosystems, but the lack of standardized criteria for the identification of areas deserving protection, insufficient legislative instruments and poor implementation hinder an efficient set up in practical terms. Here, we discuss the international legal frameworks and management measures in relation to the status of habitats and key species in the deep Mediterranean Basin. By comparing the results of a multi-criteria decision analysis (MCDA) and of expert evaluation (EE), we identify priority deep-sea areas for conservation and select five criteria for the designation of future protected areas in the deep Mediterranean Sea. Our results indicate that areas (1) with high ecological relevance (e.g., hosting endemic and locally endangered species and rare habitats),(2) ensuring shelf-slope connectivity (e.g., submarine canyons), and (3) subject to current and foreseeable intense anthropogenic impacts, should be prioritized for conservation. The results presented here provide an ecosystem-based conservation strategy for designating priority areas for protection in the deep Mediterranean Sea.This study was supported by the DG ENV project IDEM (Implementation of the MSFD to the Deep Mediterranean Sea; contract EU No. 11.0661/2017/750680/SUB/EN V.C2). MC and QG-B acknowledge support from Generalitat de Catalunya autonomous government through its funding scheme to excellence research groups (Grant 2017 SGR 315)
    corecore