257 research outputs found

    Wildlife Damage to Agricultural Crops in Pennsylvania: The Farmers\u27 Perspective

    Get PDF
    Agricultural damage by wildlife is a major concern for both agricultural and wildlife agencies at the state and federal level. Our objective was to estimate wildlife damage to agricultural crops on a statewide basis. We sent questionnaires to 4,958 farmers and 1,003 were returned after 2 mailings. Twenty-five percent of farmers responding to our survey rated the level of wildlife damage to their crops as severe or very severe, 46% as moderate, and 29% had none or very little. Mean levels of crop loss to wildlife ranged from 6% for wheat to 10% for corn grain, and white-tailed deer (Odocoileus virginianus) were the most commonly reported cause of damage for all crops except soybeans. Farmers estimated the economic value of damage caused by wildlife to 6 crops (corn grain, silage, alfalfa, soybeans, oats, and wheat) as \u3e $70 million. Ninety-one percent of Pennsylvania farmers allowed deer hunting on their farms, but 62% of the farms were bordered at least partially by land that was posted (no hunting or limited hunting). Fifty-six percent of farmers whose land was bordered by posted land believed adjacent posted land made it difficult for them to control deer numbers and damage on the land they farmed. Thirty-one percent of farmers responding to the questionnaire reported that they had changed farming practices (i.e., no longer farmed a particular field or raised a particular crop) as a consequence of deer damage. Additional methods used to control deer damage included shooting (28%), chasing (13%), fencing (9.3%), repellents (7%), and noise devices (5%). Fencing and shooting were the only methods rated as being at least moderately effective

    SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence [preprint]

    Get PDF
    It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in S. cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. We found that a glutamine-rich low complexity sequence (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming during carbon starvation. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to a model promoter in vitro. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor

    mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding

    Get PDF
    International audienceMacromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≄20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≀5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63

    Get PDF
    Leishmania parasites have evolved sophisticated mechanisms to subvert macrophage immune responses by altering the host cell signal transduction machinery, including inhibition of JAK/STAT signalling and other transcription factors such as AP-1, CREB and NF-ÎșB. AP-1 regulates pro-inflammatory cytokines, chemokines and nitric oxide production. Herein we show that upon Leishmania infection, AP-1 activity within host cells is abolished and correlates with lower expression of 5 of the 7 AP-1 subunits. Of interest, c-Jun, the central component of AP-1, is cleaved by Leishmania. Furthermore, the cleavage of c-Jun is dependent on the expression and activity of the major Leishmania surface protease GP63. Immunoprecipitation of c-Jun from nuclear extracts showed that GP63 interacts, and cleaves c-Jun at the perinuclear area shortly after infection. Phagocytosis inhibition by cytochalasin D did not block c-Jun down-regulation, suggesting that internalization of the parasite might not be necessary to deliver GP63 molecules inside the host cell. This observation was corroborated by the maintenance of c-Jun cleavage upon incubation with L. mexicana culture supernatant, suggesting that secreted, soluble GP63 could use a phagocytosis-independent mechanism to enter the host cell. In support of this, disruption of macrophage lipid raft microdomains by Methyl ÎČ-Cyclodextrin (MÎČCD) partially inhibits the degradation of full length c-Jun. Together our results indicate a novel role of the surface protease GP63 in the Leishmania-mediated subversion of host AP-1 activity

    Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence

    Get PDF
    Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging

    A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages

    Get PDF
    BACKGROUND: The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. METHODS: To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 10(6 )cells/mL. Leishmania (Leishmania) chagasi parasites (stationary-phase) were adjusted to 5 × 10(7 )cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice) mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18) antibodies and analyzed by flow citometry. RESULTS: Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1) ÎČ2 integrin. CONCLUSION: Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes

    On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds 0≀v<∞0 \leq v< \infty in Nature

    Full text link
    We present the theory, the experimental evidence, and fundamental physical consequences concerning the existence of families of undistorted progressive waves (UPWs) of arbitrary speeds 0≀v<∞0\leq v < \infty, which are solutions of the homogeneous wave equation, Maxwell equations, and Dirac and Weyl equations.Comment: 77 pages, Latex article, with figures. Includes corrections to the published versio

    Urban and rural habitats differ in number and type of bird feeders and in bird species consuming supplementary food

    Get PDF
    Bird feeding is one of the most widespread direct interactions between man and nature, and this has important social and environmental consequences. However, this activity can differ between rural and urban habitats, due to inter alia habitat structure, human behaviour and the composition of wintering bird communities. We counted birds in 156 squares (0.25 km(2) each) in December 2012 and again in January 2013 in locations in and around 26 towns and cities across Poland (in each urban area, we surveyed 3 squares and also 3 squares in nearby rural areas). At each count, we noted the number of bird feeders, the number of bird feeders with food, the type of feeders, additional food supplies potentially available for birds (bread offered by people, bins) and finally the birds themselves. In winter, urban and rural areas differ in the availability of food offered intentionally and unintentionally to birds by humans. Both types of food availability are higher in urban areas. Our findings suggest that different types of bird feeder support only those species specialized for that particular food type and this relationship is similar in urban and rural areas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11356-015-4723-0) contains supplementary material, which is available to authorized users
    • 

    corecore