2,819 research outputs found

    Gas-phase and heat-exchange effects on the ignition of high- and low-exothermicity porous solids subject to constant heating

    No full text
    This article investigates the ignition of low-exothermicity reactive porous solids exposed to a maintained source of heat (hotspot), without oxygen limitation. The gas flow within the solid, particularly in response to pressure gradients (Darcy’s law), is accounted for. Numerical experiments related to the ignition of low-exothermicity porous materials are presented. Gas and solid products of reaction are included. The first stage of the paper examines the (pseudo-homogeneous) assumption of a single temperature for both phases, amounting to an infinite rate of heat exchange between the two. Isolating the effect of gas production and flow in this manner, the effect of each on the ignition time is studied. In such cases, ignition is conveniently defined by the birth of a self-sustained combustion wave. It is found that gas production decreases the ignition time, compared to equivalent systems in which the gas-dynamic problem is effectively neglected. The reason for this is quite simple; the smaller heat capacity of the gas allows the overall temperature to attain a higher value in a similar time, and so speeds up the ignition process. Next, numerical results using a two-temperature (heterogeneous) model, allowing for local heat exchange between the phases, are presented. The pseudo-homogeneous results are recovered in the limit of infinite heat exchange. For a finite value of heat exchange, the ignition time is lower when compared to the single-temperature limit, decreasing as the rate of heat exchange decreases. However, the decrease is only mild, of the order of a few percent, indicating that the pseudo-homogeneous model is in fact a rather good approximation, at least for a constant heat-exchange rate. The relationships between the ignition time and a number of physico-chemical parameters of the system are also investigated

    Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Get PDF
    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf

    Thermal barrier coating evaluation needs

    Get PDF
    A 0.025 cm (0.010 in) thick thermal barrier coating (TBC) applied to turbine airfoils in a research gas turbine engine provided component temperature reductions of up to 190 C. These impressive temperature reductions can allow increased engine operating temperatures and reduced component cooling to achieve greater engine performance without sacrificing component durability. The significant benefits of TBCs are well established in aircraft gas turbine engine applications and their use is increasing. TBCs are also under intense development for use in the Low Heat Rejection (LHR) diesel engine currently being developed and are under consideration for use in utility and marine gas turbines. However, to fully utilize the benefits of TBCs it is necessary to accurately characterize coating attributes that affect the insulation and coating durability. The purpose there is to discuss areas in which nondestructive evaluation can make significant contributions to the further development and full utilization of TBCs for aircraft gas turbine engines and low heat rejection diesel engines

    Heat transfer to throat tubes in a square-chambered rocket engine at the NASA Lewis Research Center

    Get PDF
    A gaseous H2/O2 rocket engine was constructed at the NASA-Lewis to provide a high heat flux source representative of the heat flux to the blades in the high pressure fuel turbopump (HPFTP) during startup of the space shuttle main engines. The high heat flux source was required to evaluate the durability of thermal barrier coatings being investigated for use on these blades. The heat transfer, and specifically, the heat flux to tubes located at the throat of the test rocket engine was evaluated and compared to the heat flux to the blades in the HPFTP during engine startup. Gas temperatures, pressures and heat transfer coefficients in the test rocket engine were measured. Near surface metal temperatures below thin thermal barrier coatings were also measured at various angular orientations around the throat tube to indicate the angular dependence of the heat transfer coefficients. A finite difference model for a throat tube was developed and a thermal analysis was performed using the measured gas temperatures and the derived heat transfer coefficients to predict metal temperatures in the tube. Near surface metal temperatures of an uncoated throat tube were measured at the stagnation point and showed good agreement with temperatures predicted by the thermal model. The maximum heat flux to the throat tube was calculated and compared to that predicted for the leading edge of an HPFTP blade. It is shown that the heat flux to an uncooled throat tube is slightly greater than the heat flux to an HPFTP blade during engine startup

    The effect of oxygen starvation on ignition phenomena in a reactive solid containing a hot-spot

    No full text
    In this paper, we explore the effect of oxygen supply on the conditions necessary to sustain a self-propagating front from a spherical source of heat embedded in a much larger volume of solid. The ignition characteristics for a spherical hot-spot are investigated, where the reaction is limited by oxygen, that is, reactant + oxygen ? product. It is found that over a wide range of realistic oxygen supply levels, constant heating of the solid by the hot-spot results in a self-propagating combustion front above a certain critical hot-spot power; this is clearly an important issue for industries in which hazard prevention is important. The ignition event leading to the formation of this combustion wave involves an extremely sensitive balance between the heat generated by the chemical reaction and the depletion of the reactant. As a result, for small hot-spot radii and infinite oxygen supply, not only is there a critical power above which a self-sustained combustion front is initiated there also exists a power beyond which no front is formed, before a second higher critical power is found. The plot of critical power against hot-spot radius thus takes on a Z-shape appearance. The corresponding shape for the oxygen-limited reaction is qualitatively the same when the ratio of solid thermal diffusion to oxygen mass diffusion (N) is small and we establish critical conditions for the initiation of a self-sustained combustion front in that case. As N gets larger, while still below unity, we show that the Z-shape flattens out. At still larger values of N, the supercritical behaviour becomes increasingly difficult to define and is supplanted by burning that depends more uniformly on power. In other words, the transition from slow burning to complete combustion seen at small values of N for some critical power disappears. Even higher values of N lead to less solid burning at fixed values of power

    Ceramic coatings on smooth surfaces

    Get PDF
    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer

    The interconnectedness of identity, power and justice

    Get PDF
    Brindley J Fortuin revisits the Truth and Reconciliation Commission and the formation of post-Apartheid national identity in South Africa

    The Half-Life of Apartheid: How South Africa’s Segregated Past Impedes a United Future

    Get PDF
    Brindley Fortuin investigates how the segregation of apartheid South Africa contextualises contemporary racial distinctions and continue to factor in present day race relations

    Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example

    Get PDF
    We have studied properties of nonlinear waves in a mathematical model of a predator-prey system with pursuit and evasion. We demonstrate a new type of propagating wave in this system. The mechanism of propagation of these waves essentially depends on the ``taxis'', represented by nonlinear ``cross-diffusion'' terms in the mathematical formulation. We have shown that the dependence of the velocity of wave propagation on the taxis has two distinct forms, ``parabolic'' and ``linear''. Transition from one form to the other correlates with changes in the shape of the wave profile. Dependence of the propagation velocity on diffusion in this system differs from the square-root dependence typical of reaction-diffusion waves. We demonstrate also that, for systems with negative and positive taxis, for example, pursuit and evasion, there typically exists a large region in the parameter space, where the waves demonstrate quasisoliton interaction: colliding waves can penetrate through each other, and waves can also reflect from impermeable boundaries.Comment: 15 pages, 18 figures, submitted to Physica
    corecore