26 research outputs found

    Quantitative magnetic resonance imaging predicts individual future liver performance after liver resection for cancer

    Get PDF
    The risk of poor post-operative outcome and the benefits of surgical resection as a curative therapy require careful assessment by the clinical care team for patients with primary and secondary liver cancer. Advances in surgical techniques have improved patient outcomes but identifying which individual patients are at greatest risk of poor post-operative liver performance remains a challenge. Here we report results from a multicentre observational clinical trial (ClinicalTrials.gov NCT03213314) which aimed to inform personalised pre-operative risk assessment in liver cancer surgery by evaluating liver health using quantitative multiparametric magnetic resonance imaging (MRI). We combined estimation of future liver remnant (FLR) volume with corrected T1 (cT1) of the liver parenchyma as a representation of liver health in 143 patients prior to treatment. Patients with an elevated preoperative liver cT1, indicative of fibroinflammation, had a longer post-operative hospital stay compared to those with a cT1 within the normal range (6.5 vs 5 days; p = 0.0053). A composite score combining FLR and cT1 predicted poor liver performance in the 5 days immediately following surgery (AUROC = 0.78). Furthermore, this composite score correlated with the regenerative performance of the liver in the 3 months following resection. This study highlights the utility of quantitative MRI for identifying patients at increased risk of poor post-operative liver performance and a longer stay in hospital. This approach has the potential to inform the assessment of individualised patient risk as part of the clinical decision-making process for liver cancer surgery

    Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment volume measurement tool

    Get PDF
    Purpose Volumetric and health assessment of the liver is crucial to avoid poor post-operative outcomes following liver resection surgery. No current methods allow for concurrent and accurate measurement of both Couinaud segmental volumes for future liver remnant estimation and liver health using non-invasive imaging. In this study, we demonstrate the accuracy and precision of segmental volume measurements using new medical software, Hepatica (TM).Methods MRI scans from 48 volunteers from three previous studies were used in this analysis. Measurements obtained from Hepatica (TM) were compared with OsiriX. Time required per case with each software was also compared. The performance of technicians and experienced radiologists as well as the repeatability and reproducibility were compared using Bland-Altman plots and limits of agreement.Results High levels of agreement and lower inter-operator variability for liver volume measurements were shown between Hepatica (TM) and existing methods for liver volumetry (mean Dice score 0.947 +/- 0.010). A high consistency between technicians and experienced radiologists using the device for volumetry was shown (+/- 3.5% of total liver volume) as well as low inter-observer and intra-observer variability. Tight limits of agreement were shown between repeated Couinaud segment volume (+ 3.4% of whole liver), segmental liver fibroinflammation and segmental liver fat measurements in the same participant on the same scanner and between different scanners. An underestimation of whole-liver volume was observed between three non-reference scanners.Conclusion Hepatica (TM) produces accurate and precise whole-liver and Couinaud segment volume and liver tissue characteristic measurements. Measurements are consistent between trained technicians and experienced radiologists.[GRAPHICS].Cardiovascular Aspects of Radiolog

    Diffusion in crowded biological environments: applications of Brownian dynamics

    Get PDF
    Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of macromolecules under in vivo conditions

    A quantitative magnetic resonance cholangiopancreatography metric of intrahepatic biliary dilatation severity detects high-risk primary sclerosing cholangitis

    No full text
    Magnetic resonance imaging with magnetic resonance cholangiopancreatography (MRI-MRCP) in primary sclerosing cholangitis (PSC) is currently based on qualitative assessment and has high interobserver variability. We investigated the utility and performance of quantitative metrics derived from a three-dimensional biliary analysis tool in adult patients with PSC. MRI-MRCP, blood-based biomarkers, and FibroScan were prospectively performed in 80 participants with large-duct PSC and 20 healthy participants. Quantitative analysis was performed using MRCP+ (Perspectum Ltd., United Kingdom), and qualitative reads were performed by radiologists. Inter-reader agreements were compared. Patients were classified into high risk or low risk for disease progression, using Mayo risk score (MRS), Amsterdam-Oxford model (AOM), upper limit of normal (ULN) alkaline phosphatase (ALP), disease distribution, and presence of dominant stricture. Performance of noninvasive tools was assessed using binomial logistic regressions and receiver operating characteristic curve analyses. Quantitative biliary metrics performed well to distinguish abnormal from normal bile ducts (P 0 (odds ratio, 31.3; P = 0.035) in the multivariate analysis. Conclusion: Intrahepatic biliary dilatation severity calculated using MRCP+ is elevated in patients with high-risk PSC and may be used as an adjunct for risk stratification in PSC. This exploratory study has provided the groundwork for examining the utility of novel quantitative biliary metrics in multicenter studies

    A quantitative magnetic resonance cholangiopancreatography metric of intrahepatic biliary dilatation severity detects high-risk primary sclerosing cholangitis

    No full text
    Magnetic resonance imaging with magnetic resonance cholangiopancreatography (MRI-MRCP) in primary sclerosing cholangitis (PSC) is currently based on qualitative assessment and has high interobserver variability. We investigated the utility and performance of quantitative metrics derived from a three-dimensional biliary analysis tool in adult patients with PSC. MRI-MRCP, blood-based biomarkers, and FibroScan were prospectively performed in 80 participants with large-duct PSC and 20 healthy participants. Quantitative analysis was performed using MRCP+ (Perspectum Ltd., United Kingdom), and qualitative reads were performed by radiologists. Inter-reader agreements were compared. Patients were classified into high risk or low risk for disease progression, using Mayo risk score (MRS), Amsterdam-Oxford model (AOM), upper limit of normal (ULN) alkaline phosphatase (ALP), disease distribution, and presence of dominant stricture. Performance of noninvasive tools was assessed using binomial logistic regressions and receiver operating characteristic curve analyses. Quantitative biliary metrics performed well to distinguish abnormal from normal bile ducts (P 0 (odds ratio, 31.3; P = 0.035) in the multivariate analysis. Conclusion: Intrahepatic biliary dilatation severity calculated using MRCP+ is elevated in patients with high-risk PSC and may be used as an adjunct for risk stratification in PSC. This exploratory study has provided the groundwork for examining the utility of novel quantitative biliary metrics in multicenter studies
    corecore