23 research outputs found

    caGrid-Enabled caBIGTM Silver Level Compatible Head and Neck Cancer Tissue Database System

    Get PDF
    There are huge amounts of biomedical data generated by research labs in each cancer institution. The data are stored in various formats and accessed through numerous interfaces. It is very difficult to exchange and integrate the data among different cancer institutions, even among different research labs within the same institution, in order to discover useful biomedical knowledge for the healthcare community. In this paper, we present the design and implementation of a caGrid-enabled caBIGTM silver level compatible head and neck cancer tissue database system. The system is implemented using a set of open source software and tools developed by the NCI, such as the caCORE SDK and caGrid. The head and neck cancer tissue database system has four interfaces: Web-based, Java API, XML utility, and Web service. The system has been shown to provide robust and programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources

    CYP2D6 Genotype and Tamoxifen Response in Postmenopausal Women with Endocrine-Responsive Breast Cancer: The Breast International Group 1-98 Trial

    Get PDF
    Background Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated the clinical relevance of CYP2D6 polymorphisms. Methods We obtained tumor tissues and isolated DNA from 4861 of 8010 postmenopausal women with hormone receptor-positive breast cancer who enrolled in the randomized, phase III double-blind Breast International Group (BIG) 1-98 trial between March 1998 and May 2003 and received tamoxifen and/or letrozole treatment. Extracted DNA was used for genotyping nine CYP2D6 single-nucleotide polymorphisms using polymerase chain reaction-based methods. Genotype combinations were used to categorize CYP2D6 metabolism phenotypes as poor, intermediate, and extensive metabolizers (PM, IM, and EM, respectively; n = 4393 patients). Associations of CYP2D6 metabolism phenotypes with breast cancer-free interval (referred to as recurrence) and treatment-induced hot flushes according to randomized endocrine treatment and previous chemotherapy were assessed. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical tests were two-sided. Results No association between CYP2D6 metabolism phenotypes and breast cancer-free interval was observed among patients who received tamoxifen monotherapy without previous chemotherapy (P = .35). PM or IM phenotype had a non-statistically significantly reduced risk of breast cancer recurrence compared with EM phenotype (PM or IM vs EM, HR of recurrence = 0.86, 95% CI = 0.60 to 1.24). CYP2D6 metabolism phenotype was associated with tamoxifen-induced hot flushes (P = .020). Both PM and IM phenotypes had an increased risk of tamoxifen-induced hot flushes compared with EM phenotype (PM vs EM, HR of hot flushes = 1.24, 95% CI = 0.96 to 1.59; IM vs EM, HR of hot flushes = 1.23, 95% CI = 1.05 to 1.43). Conclusions CYP2D6 phenotypes of reduced enzyme activity were not associated with worse disease control but were associated with increased hot flushes, contrary to the hypothesis. The results of this study do not support using the presence or absence of hot flushes or the pharmacogenetic testing of CYP2D6 to determine whether to treat postmenopausal breast cancer patients with tamoxife

    Serotonin Transporter Gene, Depressive Symptoms, and Interleukin-6

    No full text
    Background-We explored the relationship of genetic variants of the serotonin transporter gene SLC6A4, a key regulator of the serotonergic neurotransmission, with both depressive symptoms and plasma interleukin-6 (IL-6) levels. Methods and Results-We genotyped 20 polymorphisms in 360 male twins (mean age, 54 years) from the Vietnam Era Twin Registry. Current depressive symptoms were measured with the Beck Depression Inventory II. IL-6 was assessed using a commercially available ELISA kit. Genotype associations were analyzed using generalized estimating equations. To study how SLC6A4 genetic vulnerability influences the relationship between depressive symptoms and IL-6, bivariate models were constructed using structural equation modeling. Of the 20 polymorphisms examined, the effective number of independent tests was 6, and the threshold of significance after Bonferroni correction was 0.008. There were 6 single-nucleotide polymorphisms significantly associated with Beck Depression Inventory (P Conclusions-Genetic vulnerability involving the SLC6A4 gene is significantly associated with both increased depressive symptoms and elevated IL-6 plasma levels. Common pathophysiological processes may link depression and inflammation, and implicate the serotonin pathway in neural-immune interactions. (Circ Cardiovasc Genet. 2009;2:614-620.

    Identification of two new Pmp22 mouse mutants using large-scale mutagenesis and a novel rapid mapping strategy.

    No full text
    Mouse mutants have a key role in discerning mammalian gene function and modelling human disease; however, at present mutants exist for only 1-2% of all mouse genes. In order to address this phenotype gap, we have embarked on a genome-wide, phenotype-driven, large-scale N-ethyl-N--nitrosourea (ENU) mutagenesis screen for dominant mutations of clinical and pharmacological interest in the mouse. Here we describe the identification of two similar neurological phenotypes and determination of the underlying mutations using a novel rapid mapping strategy incorporating speed back-crosses and high throughput genotyping. Two mutant mice were identified with marked resting tremor and further characterized using the SHIRPA behavioural and functional assessment protocol. Back-cross animals were generated using in vitro fertilization and genome scans performed utilizing DNA pools derived from multiple mutant mice. Both mutants were mapped to a region on chromosome 11 containing the peripheral myelin protein 22 gene (Pmp22). Sequence analysis revealed novel point mutations in Pmp22 in both lines. The first mutation, H12R, alters the same amino acid as in the severe human peripheral neuropathy Dejerine Sottas syndrome and Y153TER in the other mutant truncates the Pmp22 protein by seven amino acids. Histological analysis of both lines revealed hypo-myelination of peripheral nerves. This is the first report of the generation of a clinically relevant neurological mutant and its rapid genetic characterization from a large-scale mutagenesis screen for dominant phenotypes in the mouse, and validates the use of large-scale screens to generate desired clinical phenotypes in mice
    corecore