1,558 research outputs found

    Specific heat across the superconducting dome in the cuprates

    Full text link
    The specific heat of the superconducting cuprates is calculated over the entire phase diagram. A d-wave BCS approach based on the large Fermi surface of Fermi liquid and band structure theory provides a good description of the overdoped region. At underdoping it is essential to include the emergence of a second energy scale, the pseudogap and its associated Gutzwiller factor, which accounts for a reduction in the coherent piece of the electronic Green's function due to increased correlations as the Mott insulating state is approached. In agreement with experiment, we find that the slope of the linear in T dependence of the low temperature specific heat rapidly increases above optimum doping while it is nearly constant below optimum. Our theoretical calculations also agree with recent data on Bi2_2Sr2x_{2-\rm x}Lax_{\rm x}CuO6+δ_{6+\delta} for which the normal state is accessed through the application of a large magnetic field. A quantum critical point is located at a doping slightly below optimum.Comment: submitted to PRB; 8 pages, 5 figure

    The LSST Data Mining Research Agenda

    Full text link
    We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.Comment: 5 pages, Presented at the "Classification and Discovery in Large Astronomical Surveys" meeting, Ringberg Castle, 14-17 October, 200

    Grobner Bases for Finite-temperature Quantum Computing and their Complexity

    Full text link
    Following the recent approach of using order domains to construct Grobner bases from general projective varieties, we examine the parity and time-reversal arguments relating de Witt and Lyman's assertion that all path weights associated with homotopy in dimensions d <= 2 form a faithful representation of the fundamental group of a quantum system. We then show how the most general polynomial ring obtained for a fermionic quantum system does not, in fact, admit a faithful representation, and so give a general prescription for calcluating Grobner bases for finite temperature many-body quantum system and show that their complexity class is BQP

    Evidence for Multiple Mergers among Ultraluminous IR Galaxies (ULIRGs): Remnants of Compact Groups?

    Get PDF
    In a large sample of ULIRGs imaged with HST, we have identified a significant subsample that shows evidence for multiple mergers. The evidence is seen among two classes of ULIRGs: (1) those with multiple remnant nuclei in their core, sometimes accompanied by a complex system of tidal tails; and (2) those that are in fact dense groupings of interacting (soon-to-merge) galaxies. We conservatively estimate that, in the redshift range 0.05<z<0.20, at least 20 (out of 99) ULIRGs satisfy one or both of these criteria. We present several cases and discuss the possibility that the progenitors of ULIRGs may be the more classical weakly interacting compact groups of galaxies (Hickson 1997). An evolutionary progression is consistent with the results: from compact groups to pairs to ULIRGs to ellipticals. The last step follows the blowout of gas and dust from the ULIRG.Comment: 5 pages, including 1 color postscript figure. Published in the Astrophysical Journal Letters (1 Feb 2000). Replaced with final edited version, including corrected typos and additional references, plus the color figure has been improved and is only available her

    A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey

    Full text link
    We compare the structural properties of two classes of galaxies at intermediate redshift: those in dynamically close galaxy pairs, and those which are isolated. Both samples are selected from the CNOC2 Redshift Survey, and have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images were acquired as part of a snapshot survey, and were used to measure bulge fraction and asymmetry for these galaxies. We find that paired and isolated galaxies have identical distributions of bulge fractions. Conversely, we find that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13) than isolated galaxies. Assuming that half of these pairs are unlikely to be close enough to merge, we estimate that 40% +/- 11% of merging galaxies are asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/- 8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We conclude that close to half of the galaxy pairs in our sample are in the process of merging, and that most of these mergers are accompanied by triggered star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages, including 15 figures. For full resolution version, please see http://www.trentu.ca/physics/dpatton/hstpairs

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305

    Get PDF
    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and HST optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak-[OI] LINERs. The brightest emission-line region is associated with a faint (m_{I}= 20.4), giant HII region of 600 pc diameter, where a young (about 5 Myr) massive cluster of about 2 ×\times 107^7 MM_{\odot} dominates the ionization. Internal reddening towards the line-emitting regions and the optical nuclei ranges from 1 to 8 magnitudes, in the visual. Taken the reddening into aacount, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponding to a star formation rate of 80 MM_{\odot} yr1^{-1}.Comment: 2 figures, accepted to Ap.J. Letter
    corecore