2,922 research outputs found

    Will GRB 990123 Perform an Encore?

    Get PDF
    The recent gamma ray burst, GRB 990123, has an absorption redshift z_s=1.60, implying an apparent energy E3×1054ergE \ge 3 \times 10^{54} erg, and a peak luminosity Lmax6×1053erg/sL_{max} \ge 6 \times10^{53}erg/s, assuming isotropic emission. This energy is ten times larger than hitherto measured and in excess of the rest mass of the sun. Optical observations have revealed an associated galaxy displaced from the line of sight by 0.6\sim 0.6''. This raises the possibility that the burst is enhanced by gravitational lensing. We argue that existing observations probably only allow magnifications μ>400\mu>400 if the galaxy is at z_d=1.60 and the burst originates at much higher redshift. It should be possible to exclude this possibility by examining the burst time structure. If, as we anticipate, multiple imaging can be excluded, GRB 990123 remains the most intrinsically luminous event yet observed in its entirety.Comment: Accepted by MNRAS: 4 pages, latex, no figure

    Questioning, exploring, narrating and playing in the control room to maintain system safety

    Get PDF
    Systems whose design is primarily aimed at ensuring efficient, effective and safe working, such as control rooms, have traditionally been evaluated in terms of criteria that correspond directly to those values: functional correctness, time to complete tasks, etc. This paper reports on a study of control room working that identified other factors that contributed directly to overall system safety. These factors included the ability of staff to manage uncertainty, to learn in an exploratory way, to reflect on their actions, and to engage in problem-solving that has many of the hallmarks of playing puzzles which, in turn, supports exploratory learning. These factors, while currently difficult to measure or explicitly design for, must be recognized and valued in design

    TIROS-N Cosmic Ray study

    Get PDF
    An experimental and analytical study was performed on the impact of galactic cosmic rays on the TIROS-N satellite memory in orbit. Comparisons were made of systems equipped with the Harris HMI-6508 1 x 1024 CMOS/bulk RAM and the RCA CDP-1821 1 x 1024 bit CMOS/SOS RAM. Based upon the experimental results, estimated bit error rates were determined. These were at least 8.0 bit errors/day for a 300 kilobit memory with the HMI-6508 and .014 bit errors/day with the CDF-1821. It was also estimated that the HMI-6508 latchup rate in orbit is at least two orders of magnitude less than the bit error rates; the CDP-1821 will not latchup

    Resilience markers for safer systems and organisations

    Get PDF
    If computer systems are to be designed to foster resilient performance it is important to be able to identify contributors to resilience. The emerging practice of Resilience Engineering has identified that people are still a primary source of resilience, and that the design of distributed systems should provide ways of helping people and organisations to cope with complexity. Although resilience has been identified as a desired property, researchers and practitioners do not have a clear understanding of what manifestations of resilience look like. This paper discusses some examples of strategies that people can adopt that improve the resilience of a system. Critically, analysis reveals that the generation of these strategies is only possible if the system facilitates them. As an example, this paper discusses practices, such as reflection, that are known to encourage resilient behavior in people. Reflection allows systems to better prepare for oncoming demands. We show that contributors to the practice of reflection manifest themselves at different levels of abstraction: from individual strategies to practices in, for example, control room environments. The analysis of interaction at these levels enables resilient properties of a system to be ‘seen’, so that systems can be designed to explicitly support them. We then present an analysis of resilience at an organisational level within the nuclear domain. This highlights some of the challenges facing the Resilience Engineering approach and the need for using a collective language to articulate knowledge of resilient practices across domains

    Information seeking in the Humanities: physicality and digitality

    Get PDF
    This paper presents a brief overview of a research project that is examining the information seeking practices of humanities scholars. The results of this project are being used to develop digital resources to better support these work activities. Initial findings from a recent set of interviews is offered, revealing the importance of physical artefacts in the humanities scholars’ research processes and the limitations of digital resources. Finally, further work that is soon to be undertaken is summarised, and it is hoped that after participation in this workshop these ideas will be refined

    Amplitude and Phase Fluctuations for Gravitational Waves Propagating through Inhomogeneous Mass Distribution in the Universe

    Full text link
    When a gravitational wave (GW) from a distant source propagates through the universe, its amplitude and phase change due to gravitational lensing by the inhomogeneous mass distribution. We derive the amplitude and phase fluctuations, and calculate these variances in the limit of a weak gravitational field of density perturbation. If the scale of the perturbation is smaller than the Fresnel scale 100pc(f/mHz)1/2\sim 100 {pc} (f/{mHz})^{-1/2} (ff is the GW frequency), the GW is not magnified due to the diffraction effect. The rms amplitude fluctuation is 1101-10 % for f>1010f > 10^{-10} Hz, but it is reduced less than 5% for a very low frequency of f<1012f < 10^{-12} Hz. The rms phase fluctuation in the chirp signal is 103\sim 10^{-3} radian at LISA frequency band (10510110^{-5} - 10^{-1} Hz). Measurements of these fluctuations will provide information about the matter power spectrum on the Fresnel scale 100\sim 100 pc.Comment: 6 pages, 6 figures, refferences added, accepted for publication in Ap

    Verification-guided modelling of salience and cognitive load

    Get PDF
    Well-designed interfaces use procedural and sensory cues to increase the cognitive salience of appropriate actions. However, empirical studies suggest that cognitive load can influence the strength of those cues. We formalise the relationship between salience and cognitive load revealed by empirical data. We add these rules to our abstract cognitive architecture, based on higher-order logic and developed for the formal verification of usability properties. The interface of a fire engine dispatch task from the empirical studies is then formally modelled and verified. The outcomes of this verification and their comparison with the empirical data provide a way of assessing our salience and load rules. They also guide further iterative refinements of these rules. Furthermore, the juxtaposition of the outcomes of formal analysis and empirical studies suggests new experimental hypotheses, thus providing input to researchers in cognitive science
    corecore