111 research outputs found

    Superconductivity in doped sp3 semiconductors: The case of the clathrates

    Get PDF
    We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba-8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant lambda calculated from perturbative density functional theory. Further, the study of I-8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp(3) silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C-60

    Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?

    Full text link
    Axisymmetric magnetic lines of nanometer sizes (chiral vortices or skyrmions) have been predicted to exist in a large group of noncentrosymmetric crystals more than two decades ago. Recently these magnetic textures have been directly observed in nanolayers of cubic helimagnets and monolayers of magnetic metals. We develop a micromagnetic theory of chiral skyrmions in thin magnetic layers for magnetic materials with intrinsic and induced chirality. Such particle-like and stable micromagnetic objects can exist in broad ranges of applied magnetic fields including zero field. Chiral skyrmions can be used as a new type of highly mobile nanoscale data carriers

    Interesting magnetic properties of Fe1−x_{1-x}Cox_xSi alloys

    Full text link
    Solid solution between nonmagnetic narrow gap semiconductor FeSi and diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with long-range helical magnetic ordering, for a wide range of intermediate concentration. We report various interesting magnetic properties of these alloys, including low temperature re-entrant spin-glass like behaviour and a novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya interaction in the magnetic response of these non-centrosymmetric alloys is discussed.Comment: 11 pages and 3 figure

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure

    Large Anomalous Hall effect in a silicon-based magnetic semiconductor

    Full text link
    Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology. While Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, and which we have proven to display a variety of large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure

    Surface-dominated conduction up to 240 K in the Kondo insulator SmB6 under strain

    Full text link
    SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T∗ ≈ 4 K (ref. ), limiting its scientific investigation and device application. Here, we report the enhancement of T∗ in SmB6 under the application of tensile strain. With 0.7% tensile strain we report surface-dominated conduction at up to a temperature of 240 K, persisting even after the strain has been removed. This can be explained in the framework of strain-tuned temporal and spatial fluctuations of f-electron configurations, which might be generally applied to other mixed-valence materials. We note that this amount of strain can be induced in epitaxial SmB6 films via substrate in potential device applications

    Cytology, biochemistry and molecular changes during coffee fruit development

    Full text link

    High field, high pressure magnetic properties of UAl2

    No full text
    Nous avons mesuré l'aimantation de UAl2 sous champ fort (jusqu'à 150 kG) et sous haute pression hydrostatique (jusqu'à 7 kbar). La compressibilité de UAl2 a également été déterminée jusqu'à 4 K.Measurements are reported of the magnetization of UAl2 under high field (up to 150 kG) and high hydrostatic pressure (up to 7 kbar). The compressibility of UAl2 has also been determined down to 4 K

    Analyse de la répartition des contraintes dans un échantillon soumis à une compression uniaxiale. Étude de la variation des températures d'ordre magnétiques du terbium et du dysprosium avec les contraintes uniaxiales

    No full text
    Nous avons mesuré la variation avec les contraintes uniaxiales de la température de Néel du terbium et de la température de transition ferromagnétique-hélimagnétique du dysprosium. Dans une étude préliminaire nous avons déterminé par photoélasticité la répartition des contraintes à l'intérieur d'échantillons en résine photoélastique de forme cubique ou sphérique
    • …
    corecore