945 research outputs found

    Infinite Invariant Density Determines Statistics of Time Averages for Weak Chaos

    Full text link
    Weakly chaotic non-linear maps with marginal fixed points have an infinite invariant measure. Time averages of integrable and non-integrable observables remain random even in the long time limit. Temporal averages of integrable observables are described by the Aaronson-Darling-Kac theorem. We find the distribution of time averages of non-integrable observables, for example the time average position of the particle. We show how this distribution is related to the infinite invariant density. We establish four identities between amplitude ratios controlling the statistics of the problem.Comment: 5 pages, 3 figure

    Linear Response in Complex Systems: CTRW and the Fractional Fokker-Planck Equations

    Full text link
    We consider the linear response of systems modelled by continuous-time random walks (CTRW) and by fractional Fokker-Planck equations under the influence of time-dependent external fields. We calculate the corresponding response functions explicitely. The CTRW curve exhibits aging, i.e. it is not translationally invariant in the time-domain. This is different from what happens under fractional Fokker-Planck conditions

    A highly optimized vectorized code for Monte Carlo simulations of SU(3) lattice gauge theories

    Get PDF
    New methods are introduced for improving the performance of the vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the CDC CYBER 205. Structure, algorithm and programming considerations are discussed. The performance achieved for a 16(4) lattice on a 2-pipe system may be phrased in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic, it is 36.3 microsecond/link for 8 hits per iteration (40.9 microsecond for 10 hits) or 101.5 MFLOPS

    Non-Poisson processes: regression to equilibrium versus equilibrium correlation functions

    Full text link
    We study the response to perturbation of non-Poisson dichotomous fluctuations that generate super-diffusion. We adopt the Liouville perspective and with it a quantum-like approach based on splitting the density distribution into a symmetric and an anti-symmetric component. To accomodate the equilibrium condition behind the stationary correlation function, we study the time evolution of the anti-symmetric component, while keeping the symmetric component at equilibrium. For any realistic form of the perturbed distribution density we expect a breakdown of the Onsager principle, namely, of the property that the subsequent regression of the perturbation to equilibrium is identical to the corresponding equilibrium correlation function. We find the directions to follow for the calculation of higher-order correlation functions, an unsettled problem, which has been addressed in the past by means of approximations yielding quite different physical effects.Comment: 30 page

    Coherent Destruction of Photon Emission from a Single Molecule Source

    Full text link
    The behavior of a single molecule driven simultaneously by a laser and by an electric radio frequency field is investigated using a non-Hermitian Hamiltonian approach. Employing the renormalization group method for differential equations we calculate the average waiting time for the first photon emission event to occur, and determine the conditions for the suppression and enhancement of photon emission. An abrupt transition from localization-like behavior to delocalization behavior is found.Comment: 5 pages, 4 figure

    Stochastic Ergodicity Breaking: a Random Walk Approach

    Full text link
    The continuous time random walk (CTRW) model exhibits a non-ergodic phase when the average waiting time diverges. Using an analytical approach for the non-biased and the uniformly biased CTRWs, and numerical simulations for the CTRW in a potential field, we obtain the non-ergodic properties of the random walk which show strong deviations from Boltzmann--Gibbs theory. We derive the distribution function of occupation times in a bounded region of space which, in the ergodic phase recovers the Boltzmann--Gibbs theory, while in the non-ergodic phase yields a generalized non-ergodic statistical law.Comment: 5 pages, 3 figure

    Towards deterministic equations for Levy walks: the fractional material derivative

    Full text link
    Levy walks are random processes with an underlying spatiotemporal coupling. This coupling penalizes long jumps, and therefore Levy walks give a proper stochastic description for a particle's motion with broad jump length distribution. We derive a generalized dynamical formulation for Levy walks in which the fractional equivalent of the material derivative occurs. Our approach will be useful for the dynamical formulation of Levy walks in an external force field or in phase space for which the description in terms of the continuous time random walk or its corresponding generalized master equation are less well suited

    Ergodicity Breaking in a Deterministic Dynamical System

    Full text link
    The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a weakly chaotic dynamical system: a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.Comment: 11 pages, 4 figure

    Analytical and Numerical Study of Internal Representations in Multilayer Neural Networks with Binary Weights

    Full text link
    We study the weight space structure of the parity machine with binary weights by deriving the distribution of volumes associated to the internal representations of the learning examples. The learning behaviour and the symmetry breaking transition are analyzed and the results are found to be in very good agreement with extended numerical simulations.Comment: revtex, 20 pages + 9 figures, to appear in Phys. Rev.
    • …
    corecore